УДК 631.356.2

ЗАЩИТА ЖЕЛЕЗИСТЫХ ПОРОШКОВЫХ МАТЕРИАЛОВ ПОКРЫТИЯМИ НОВОГО ПОКОЛЕНИЯ

С. В. СИНИЙ, * В. В. ШИРОКОВ, А. В. ШОСТАК «ЛУЦКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» * «УКРАИНСКАЯ АКАДЕМИЯ ПЕЧАТИ»

Луцк, Львов, Украина

Для защиты деталей из пресс-порошковых материалов эффективно нанесение на их поверхность покрытий. Предпочтительно диффузионные, минимизирующие проблему их отслаивания и наводораживания подложки в процессе формирования. Учитывая малогабаритность порошковых изделий, наиболее приемлем способ получения покрытий в жидкометаллических средах на основе легкоплавких металлов – позволяющий защищать небольшие детали любой конфигурации, обеспечивая доставку диффузантов на значительную глубину и проникновение в микродефекты (границы зерен, поры и прочие). Причём, использование в качестве транспортной среды расплавов металлов, более активных к примесям внедрения, чем подложка, уменьшает концентрацию сегрегаций последних в междучастичном пространстве, отрицательно влияющих на физико-механические свойства металлических материалов. Получение покрытий из жидкометаллических сред на изделиях из компактных материалов достаточно отработано, базируется на эффекте интенсификации термо- и массопереноса в металлических расплавах между разнородными материалами. Комплекс работ, проведенный на изучение особенностей формирования и свойств диффузионных никелевых покрытий на пресс-порошковых и компактных железистых материалах в жидкометаллических транспортных средах, позволил установить оптимальные температурно-временные параметры нанесения и возможность их соответствия процессу спекания, совмещения этих процессов, оценить физико-механические и др. свойства. Параметры получаемых покрытий на порошковой подложке и компактной в табл. 1. Выбор транспортного расплава зависит от его температуры плавления, растворимости диффузанта, стойкости матрицы, проницаемости в каналы и пустоты порошковой матрицы. К особенностям технологии нанесения покрытий из транспортных металлических расплавов в частности относят: использование активно взаимодействующих с компонентами воздуха лития или натрия; потребность спецоборудования для заполнения и герметизации контейнеров с последующей выдержкой в них при соответствующей температуре покрываемых изделий. Но это не касается свинца или, висмута. предварительной например, кальция Ha основании И термодинамической основных оценки И анализа возможных сопутствующих физико-химических процессов при нанесении, расчета предельной растворимости никеля, компонентов матрицы и контейнера, в качестве транспортной среды выбраны литий и свинец, материал ванныконтейнера – сталь 12Х18Н9Т.

Табл. 1. Вид, подложка и толщина диффузионных покрытий

П		TD.
Покрыти	Материал подложки	Толщина
e	типориал подложки	покрыт., мкм
Ni	пресс-порошковое железо ПЖ-4М, железо-	10÷60
	углеродистые и легированные стали, спецсплавы	
Pt	армко-железо, углеродистые стали, медь	5÷150
Ag	железо, углеродистые стали, медь	5÷95
Pd	железо, углеродистые стали, медь	10÷75
Pd-In	железо, углеродистые и легированные стали	10÷120
Ni-Al	пресс-порошковое железо, железо, углеродистые и	15÷130
	легированные стали, спецсплавы	A . K
Cr	железо, различные стали, спецсплавы	15÷120
В	железо, стали, ванадий, ниобий, спецсплавы	50÷900
Al	углеродистые стали	20÷500
Ti	углеродистые стали	50÷400
W	углеродистые и легированные стали	20÷100
Ge	углеродистые стали	20÷100
Be	углеродистые стали	20÷150
Si	железо, хромо-никелевые и никелевые сплавы,	40÷150
	молибден, ниобий, спецсплавы	
WSi2	ниобий	до 40
B+Si	железо, хромо-никелевые и никелевые сплавы,	50÷180
	молибден, ниобий, спецсплавы	
V	железо, хромо-никелевые и никелевые сплавы	до 50

Установлено, что формирование диффузионного покрытия на поверхности пресс-порошкового изделия можно условно разделить на следующие этапы:

- 1) просачивание транспортного расплава в матрицу до определенной глубины;
- 2) осаждение диффузанта на внутренних поверхностях дефектов и выталкивание транспортного расплава на поверхность;
- 3) формирование поверхностного слоя. Рост поверхностного слоя на порошковом основании происходит по тому же механизму, что и на компактном. Полученные результаты показали, что материалы из железистых пресс-порошков после никелирования в жидкометаллических растворах, объединенного с процессом спекания, не уступают компактным и материалам, прошедшим спекание отдельно, кроме того они могут конкурировать с нержавеющими сталями, поскольку не уступают им не только по сопротивлению износу, но и по коррозионной стойкости.