УДК 531.4:548.12

УЛУЧШЕНИЕ СТРУКТУРЫ БАББИТОВ УГЛЕРОДНЫМИ НАНОЧАСТИЦАМИ

В.Ю. СТЕЦЕНКО, А.И. РИВКИН, А.П. ГУТЕВ Государственное научное учреждение «ИНСТИТУТ ТЕХНОЛОГОГИИ МЕТАЛЛОВ НАН Беларуси» Могилев, Беларусь

настоящее время самым дешевым материалом, содержащим углеродные наночастицы, нанотрубки углеродные являются (УНТ). Благодаря высокой структурной дисперсности они могут использоваться в сплавов. Однако, модификаторов вследствие летучести УНТ как модификаторы могут применяться только для сплавов с относительно низкой температурой плавления.

В институте технологии металлов были проведены исследования по определению влияния УНТ на микроструктуру и твердость промышленных БС83 (83%Pb+17%Sb), свинцовистых баббитов марок Б10 (74%Pb+16%Sb+10%Sn) баббитов оловянистих Б83 И (83%Sn+11%Sb+6%Cu), авиабаббита (92%Sn+3%Cu+5%Sb). Расплавы сплавов готовили в электропечи сопротивления «Snol-1300» в шамотографитовом тигле. УНТ вводили в количестве 0,1 % от массы жидкого металла путем их механического замешивания в расплав. Получали отливки диаметром 27 мм и длиной 70 мм без УНТ и, обработанные УНТ. После их шлифовки, полировки и травления микроструктуру шлифов исследовали с помощью программно-аппаратного комплекса на базе микроскопа «Carl Zeiss Axiotech vario». Твердость образцов определяли на твердомере ТШ2М.

сравнительного металлографического установлено, что введение УНТ в жидкие свинцовистые баббиты позволяет кристаллы первичной сурьмы и свинцово-сурьмянистой эвтектики. Так дисперсность фазовых составляющих отливок из баббитов БС83 и Б10, обработанных УНТ, повысилась в 2÷3 раза. При этом их твердость увеличилась на 5÷15 %. Модифицирование УНТ оловянистого баббита Б83 и авиабаббита, также позволило измельчить кристаллы сурьмы в 1,5÷2 раза, при этом они располагались более равномерно и были изолированы друг друга. Твердость отливок баббитов otмодифицирования УНТ снизилась на 5÷15 %, что положительно сказывается на прирабатываемости оловянистых баббитов.

Таким образом, углеродные наночастицы позволяют значительно улучшить структуру баббитов, что способствует повышению их антифрикционных свойств.

