УДК 535.32: 621.378 ИНТЕГРАЛЬНО-ОПТИЧЕСКИЙ ДАТЧИК НА ОСНОВЕ НАНОСЛОЕВ ОКСИДОВ И ОКСИДНЫХ ПОЛУПРОВОДНИКОВ

А.В. ХОМЧЕНКО, В.Г. ГУЗОВСКИЙ, И.У. ПРИМАК, * Г.П.ШЕВЧЕНКО, И.А. КОРНЕЕВА

Государственное учреждение высшего профессионального образования «БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ»

*Учреждение БГУ «НИИ ФИЗИКО-ХИМИЧЕСКИХ ПРОБЛЕМ» Могилев, Минск, Беларусь

В настоящем сообщении рассмотрены результаты исследований оптических свойств тонкопленочных наноразмерных структур на основе оксидных полупроводников и нанокомпозитных материалов GeO_2 -Pd в условиях адсорбции молекул газа методами волноводной и фотомодуляционной спектроскопии.

Изучены условия формирования и термостимулированные процессы в нанокомпозитных пленках состава (мол.%) 99GeO₂-1Pd, полученных из GeO_2 -золей, содержащих ионы Pd(II). Установлено, что пленки хорошего качества толщиной 50–500 нм при послойном нанесении композитных золей на кварцевые подложки, формируются при концентрации GeO_2 в золе равной 3,0–3,5% и температуре $300\,^{0}$ C. Высокая адгезия к подложке обеспечивается за счет предварительного нанесения GeO_2 подслоя. Показано, что в исследуемых пленках образуются наночастицы Pd размером 10 нм при 275 0 C (λ_{max} = 240 нм). Полученные пленки GeO_2 -Pd перспективны в качестве сенсоров водорода.

Проанализированы вопросы чувствительности датчиков газов на основе полупроводниковой пленки и возможности ее повышения. Выполнено моделирование изменений волноводных свойств пленки вследствие адсорбции газа ее свободной поверхностью. В частности, для пленки из двуокиси олова, легированной сурьмой (толщина пленки 0,1 мкм, концентрация сурьмы в ней $4 \cdot 10^{23}$ м⁻³), расположенной на кварцевой подложке, относительное изменение мнимой части постоянной распространения основной моды TE-поляризации на длине волны $\lambda = 0.6328$ мкм при адсорбции молекул газовой примеси с поверхностной плотностью $3 \cdot 10^{16} \, \,\mathrm{m}^{-2}$ составило 45 %. Это значение хорошо согласуется с результатами измерений $\Delta h''$ для полупроводникового интегрально-оптического датчика концентрации ацетона в воздухе. Показано, что с уменьшением отношения толщины полупроводниковой пленки к эффективной длине Дебая чувствительность датчика возрастает, о чем свидетельствуют результаты экспериментов для полупроводникового интегрально-оптического датчика концентрации примеси аммиака в воздухе.

