УДК 621. 791.92 РЕМОНТ СВАРКОЙ ЗАЩИТНОГО ПОКРЫТИЯ ПРОТОЧНОЙ ЧАСТИ ЦЕНТРОБЕЖНОГО НАСОСА Р-2003 КУКК

А.Г. ЛУПАЧЕВ, Е.А. ХАРЧЕВНИКОВА, *И.В.ВОЛОВИЧ Государственное учреждение высшего профессионального образования «БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ» *ОАО «Мозырский НПЗ» Могилев, Мозырь, Беларусь

Насосный агрегат предназначен для перекачивания углеводорода с катализаторной пылью и работает при температуре $350\,^{0}$ С, давлении 2,2 МПа при максимальном расходе продукта — $117\,\mathrm{m}^{3}$, что вызывает кавитационноабразивную эрозию элементов проточной части насоса, приводящую к износу формообразующих поверхностей.

Проточная часть центробежного насоса состоит из корпуса, улитки, крышки улитки, направляющего лопаточного агрегата.

Основные детали насоса, контактирующие с технологической средой изготовлены в биметаллическом исполнении. Корпус и крышка насоса выполнены в комбинации ASTM A487 CA6NM + Стеллит 21. Проточная часть насоса ASTM A487 CA6NM + Стеллит 6. Химический состав приведен в табл. 1.

Табл. 1. Химический состав восстанавливаемых элементов насоса, %

Сплава	Co	Cr	С	W	Mo	Ni	Si	Fe	Mn	HRC 20°C	HRC 400°C	HRC 600°C
~======================================		• • •				3.5						
STELLI	Осн.	28,0	1,2	5,0	-	Max.	1,0	Max.	1,0	42	34	<20
T 6						2,5		2,5				
STELLI	Осн.	27,0	0,25	-	5,5	2,5	1,0	Max.	1,0	32	20	-
T 21								3,0				
A487	-	12,7	0,06	-	0,7	4,0	0,8	Ост.	0,7			

Основной слой биметалла состоит из стали A487, которая относится к аустенитно-мартенситному классу. Зона термического влияния этой стали содержит закалочные структуры с твердостью до 25 HRC при невысокой пластичности. Поэтому эту сталь следует наплавлять электродами предназначенными для сварки закаливающихся сталей. Химический состав сварочных материалов приведен в табл. 2.

Табл. 2. Химический состав наплавленного металла, %

Марка	С	Si	Mn	Gr	Ni
BOHLER FOX A 7	0,1	0,7	6,5	18,8	8,8

Твердость чистого наплавленного металла BOHLER FOX A 7 после наплавки 200 HB, после наклепа 400H B, что хорошо сочетается с требованиями по созданию самоупрочняющегося буферного слоя перед наплавкой рабочего упрочняющего слоя. Буферный слой, обладая высокими пластическими свойствами в состоянии наплавки, позволил получить

качественную наплавку твердым сплавом: UTP CELSIT 706, имеющего твердость наплавленного слоя -40...42 HRC, при температуре $600~^{0}$ C -33HRC. Наплавленный металл буферного слоя способен релаксировать напряжения. возникающие от наплавки твердого слоя, тем самым препятствует образованию трещин.

Рабочий слой проточной части насоса выполнен из кобальтовых сплавов. Кобальтовые сплавы с хромом и вольфрамом, так называемые стеллиты, отличаются замечательными эксплуатационными свойствами: они способны сохранять твердость, вплоть до 800 °C, обладают стойкостью против коррозии и кавитационной эрозии, а также имеют отличную износостойкость при сухом трении металла по металлу. Сам по себе кобальт не обладает высокой жаропрочностью, это свойство придают присадки хрома (20-35 %) и вольфрама (3-30 %). Важным компонентом является и углерод, который образует с вольфрамом и хромом специальные карбиды, улучшающие сопротивление абразивному износу.

Наплавку крышки И корпуса насоса, выполняли электродами UTP CELSIT 721(E 20-UM-300-CKTZ), диаметром 3,2 мм. Твердость чистого наплавленного металла-721 – 30...32 HRC, после наклепа 45 HRC при температуре $600 \, ^{0}\text{C} - 240 \, \text{HB}.$

Наплавку расходного кольца, крыльчатки выполняли покрытыми электродами UTP CELSIT 706 (E 20-UM-40-CTZ), диаметром 3,2 мм. Твердость чистого наплавленного металла – 40...42 HRC, при температуре $600\,^{0}\text{C} - 33 \text{ HRC}.$

Химический состав сварочных материалов приведен в табл. 3.

Табл. 3. Химический состав рекомендуемых сварочных материалов

Марка	С	Cr	Mo	Ni	Co	W
UTP CELSIT 721	0,3	31,0	5,0	3,5	основа	-
UTP CELSIT 706	1,1	27,5	•	-	основа	4,5

Обеспечение минимальной доли основного металла в наплавленном рабочем слое и соблюдение необходимых термических условий сварки является наиболее важными особенностями технологического процесса наплавки кобальтовых сплавов. Эти требования выполнены минимизации теплового воздействия на металл подслоя и снижения доли участия основного металла в металле шва.

