УДК 531.8

РАСЧЕТ КИНЕТИЧЕСКИХ МОМЕНТОВ МЕХАНИЧЕСКОЙ СИСТЕМЫ ПРИ ПЕРЕМЕЩЕНИИ ТЕЛА ПО ВРАЩАЮЩЕМУСЯ ДИСКУ

А.С. СОКОЛОВА, А.В. ЛОКТИОНОВ

Учреждение образования

«ВИТЕБСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ»

Витебск, Беларусь

Рассмотрим движение системы тел при вращении ee неподвижной оси при условии, что одно из тел системы перемещается в радиальном направлении, т.е. при условии, что момент инерции системы является величиной переменной.

Система состоит из двух тел, одно из которых представляет собой диск, а второе — тело точечной массы. Диск характеризуется моментом инерции I_0 , тело точечной массы — массой m. Тело 2 способно перемещаться в радиальном направлении (r=OM) по диску 1.

Момент инерции системы

$$I = I_0 + mr^2. (1)$$

Кинетический момент системы

$$L = I\omega. (2)$$

Продифференцируем равенство (2) и получим

$$\frac{dL}{dt} = I \frac{d\omega}{dt} + \frac{dI}{dt} \omega = M^e.$$
 (3) Из равенства (3) следует, что ускорение системы

$$\varepsilon = \frac{d\omega}{dt} = \frac{M^e - \frac{dI}{dt}\omega}{I} \,. \tag{4}$$

Из (4) видно, что если $M^e = \frac{dI}{dt}\omega$, то $\frac{d\omega}{dt} = 0$, т.е. $\omega = const$; $M^e > \frac{dI}{dt}\omega$,

то $\frac{d\omega}{dt} > 0$; $M^e < \frac{dI}{dt}\omega$, то $\frac{d\omega}{dt} < 0$. Анализ уравнения (4) показывает, что ускорение не всегда совпадает по направлению с моментом внешних сил.

Дифференцируя уравнение (1), получим

$$\frac{dI}{dt} = 2mr\dot{\vec{r}} = 2mr\dot{\vec{r}} = 2mr\upsilon. \tag{5}$$

Момент кориолисовых сил инерции при движении тела 2
$$M_{\kappa} = 2m(\omega \vec{r}) \cdot r = 2mr \upsilon \omega \ . \tag{6}$$
 Из равенств (5) и (6) следует, что

$$\frac{dI}{dt}\omega = M_{\kappa}. \tag{7}$$

Полученная формула (7) определяет взаимосвязь геометрии масс с проявлением сил инерции. Установлено, что изменение осевого момента инерции, наряду с угловой скоростью, также является причиной появления моментов сил инерции. Изменение осевого момента инерции вызвано перемещением точки в радиальном направлении.

Рассмотрим влияние сил инерции отдельно на каждое тело системы. Кинетический момент первого тела

$$L_1 = I_0 \omega = I_0 \frac{L}{I} \; ; \tag{8}$$

и второго тела

$$L_2 = (m\upsilon) \cdot r = mr^2 \omega = mr^2 \frac{L}{I} . \tag{9}$$

Тогда $I_0 \frac{L}{I} + mr^2 \frac{L}{I} = L$. Следовательно соблюдается условие $L_1 + L_2 = L$.

При перемещении тела 2 на тело 1 действует кориолисова сила инерции и сила инерции углового ускорения. Производная от кинетического момента первого тела

$$\frac{dL_1}{dt} = -M_{\kappa} - M_{\varepsilon} \tag{10}$$

Моменты реакций связей и силы тяжести равны нулю. Найдем M_ϵ сил инерции углового ускорения. При этом

$$a_{\tau} = \varepsilon r = \frac{d\omega}{dt} r \; ; \; \Phi_{\tau} = m a_{\tau} = m \bigg(\frac{d\omega}{dt} \bigg) \cdot r \; ; \; M_{\varepsilon} = \big(m a_{\tau} \big) \cdot r = m \frac{d\omega}{dt} r^2 \; ,$$
 где $\omega = \frac{L}{I} \; ; \; a \; \frac{d\omega}{dt} = \frac{d}{dt} \bigg(\frac{L}{I} \bigg) = L \frac{d}{dt} \Big(I^{-1} \Big) = -L I^{-2} \dot{I} = -\frac{\dot{I}}{I^2} L \; .$

Следовательно, $M_{\varepsilon} = -m \left(\frac{\dot{I}}{I^2} L \right) r^2 = -\frac{\dot{I}}{I^2} m r^2 L$. Представим уравнение (10)

$$\frac{dL_{1}}{dt} = -\frac{\dot{I}L}{I} - \left(-\frac{\dot{I}}{I^{2}}mr^{2}L\right) = -\frac{\dot{I}L}{I} + \frac{\dot{I}}{I^{2}}mr^{2}L = -\frac{\dot{I}L}{I} + \frac{\dot{I}}{I^{2}}L(mr^{2} + I_{0} - I_{0}) = -\frac{\dot{I}L}{I} + \frac{\dot{I}L}{I} - \frac{\dot{I}}{I^{2}}LI_{0}$$

Тогда $\frac{dL_1}{dt} = -\frac{\dot{I}\dot{L}\dot{I_0}}{\dot{I}^2}$. Откуда $L_1 = -I_0L\int\frac{\dot{I}}{I^2}dt$. Введем замену

$$\frac{1}{I} = Z \; ; \; -\frac{\dot{I}}{I^2} dt = dZ \; ; \; L_1 = --I_0 L \int dZ = I_0 L Z + c = \frac{I_0 L}{I} + c \; .$$

При t=0 $L_1 = \frac{I_0 L}{I_0 + mr^2}$, $I = I_0 + mr^2$.

Откуда
$$c=0$$
, $L_1 = \frac{LI_0}{I}$, что соответствует (8). (11)

Откуда c=0, $L_1=\frac{LI_0}{I}$, что соответствует (8). (11) Следовательно, моменты инерции сил системы применительно отдельных телам системы действуют как моменты внешних сил.

Рассмотрим влияние сил инерции на тело 2.

$$\begin{split} \frac{dL_2}{dt} &= M_\kappa + M_\varepsilon = \frac{\dot{I}L}{I} - \frac{\dot{I}}{I^2} \textit{mr}^2 L = \frac{\dot{I}L}{I} - \frac{\dot{I}}{I^2} \textit{L} \left(\textit{mr}^2 + I_0 - I_0 \right) = \frac{\dot{I}L}{I} - \frac{\dot{I}L}{I} + \frac{\dot{I}}{I^2} \textit{L} I_0 \;. \end{split}$$
 Тогда $\frac{dL_2}{dt} = \frac{\dot{I}LI_0}{I^2} \;.$

Решая данное уравнение $L_2 = I_0 L \int \frac{\dot{I}}{I^2} dt$ и введя замену $\frac{1}{I} = Z$; $\frac{\dot{I}}{I^2} dt = -dZ$, получим $L_2 = -I_0 L \int dZ = -I_0 L Z + c = -\frac{I_0 L}{I} + c$.

При
$$t=0$$
 $L_2 = \frac{mr^2L}{I_0}$. Откуда $c=L$, а $L_2 = L - \frac{LI_0}{I} = L - L_1$. (12)

Следовательно, и в рассматриваемом случае, соблюдается условие

 $L_1 + L_2 = L.$

