УДК 621.762:669.71

Г. Ф. Ловшенко, канд. техн. наук, доц., Б. Б. Хина, д-р физ.-мат. наук

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ДИФФУЗИОННОГО РАСТВОРЕНИЯ ОКСИДНЫХ ВКЛЮЧЕНИЙ В МЕДНОЙ МАТРИЦЕ И РОСТА ДИСПЕРСНЫХ ЧАСТИЦ УПРОЧНЯЮЩЕЙ ФАЗЫ

Разработан численный метод решения новой, нетривиальной задачи о внутреннем окислении в трехкомпонентной системе – диффузионно-контролируемое растворение сферического включения оксида меди Cu₂O в твердом растворе Cu(Al), сопровождающееся образованием и ростом дисперсных частиц упрочняющей фазы (оксида Al₂O₃) в медной матрице в процессе отжига. Разработанная математическая модель позволяет оценить время полного растворения частиц Cu₂O, которые являются источником кислорода при внутреннем окислении, а также оценить размер и пространственное распределение дисперсных включений упрочняющей фазы (Al₂O₃) в матрице.

Уточненная математическая формулировка задачи

Математическая модель о диффузионно-контролируемом растворении сферического включения оксида меди Cu₂O в матрице твердого раствора Cu-Al (задача типа внутреннего окисления в трехкомпонентной системе) имеет следующий вид [1]. В твердом растворе на основе меди (фаза 2) в сферической области $[R_0(t),R_{\infty}]$ протекает диффузионный массоперенос атомов кислорода и алюминия и рост дисперсных включений стехиометрического соединения Al₂O₃ (фаза 3). Диффузия в фазе 2 описывается уравнением

$$(1-v)\frac{\partial c_{i}}{\partial t} = \frac{1}{r^{2}}\frac{\partial}{\partial r}\left[r^{2}(1-v)\sum_{k}D_{ik}\frac{\partial c_{k}}{\partial r}\right] - (c_{[i]3}^{0}-c_{i})\frac{\partial v}{\partial t}; \quad i,k \equiv 0, Al,$$
(1)

где v – объемная доля включений фазы 3 (Al_2O_3) ; г – радиальная координата; c_i, i = O,Al – массовая концентрация диффундирующих элементов в фазе 2; D_{ik} – коэффициенты диффузии в фазе 2 с учетом перекрестного влияния диффузи-онных потоков атомов О и Al; с⁰_{[1]3} – массовая концентрация i-го элемента в фазе 3, т. е. в соединении Al₂O₃ (c⁰_{[O]3} = 0,4706, c⁰_{[Al]3} = 0,5294).

Растворение сферического включения фазы 1 (Cu₂O) в медной матрице определяется диффузионным отводом атомов кислорода от поверхности Cu_2O вглубь твердого раствора (фазы 2). Поэтому к уравнению (1) ставится граничное условие на поверхности 2/1 (т. е. при $r = R_0(t)$) в виде диффузионной задачи Стефана:

$$[(\rho_{1} / \rho_{2})c_{[O]I}^{0} - c_{[O]21}^{0}]\frac{dR_{0}}{dt} = -J_{O}|_{R_{0}(t)};$$

$$J_{O} = -\sum_{j} D_{Ok} \frac{\partial c_{k}}{\partial r}; \quad k \equiv O, Al, \qquad (2)$$

где с⁰_{[O]1} – массовая концентрация кислорода в фазе 1 (Cu₂O) на границе с фазой 2 (с⁰_{[O]1} = 0,111); с⁰_{[O]21} – равновесная массовая концентрация кислорода в твердом растворе (фаза 2) на границе с Cu₂O; R₀(t) – текущая координата границы фаз 2/1; ρ_1 – плотность Cu₂O ($\rho_1 \approx 6$), г/см³; ρ_2 – плотность меди ($\rho_2 = 8,93$), г/см³; J_O|_{R0(t)} – диффузионный поток кислорода в фазе 2 на границе 2/1.

Для атомов алюминия на движущейся границе Cu_2O/Cu (т. е. 2/1) возможны два варианта. Исходя из условия термодинамического равновесия, на ней должна постоянно поддерживаться равновесная концентрация алюминия $c^0_{[AI]21}$, которая близка к нулю:

$$c_{AI}\Big|_{R_0(t)} = c_{[AI]21}^0.$$
 (3)

Однако применительно к уравнению диффузии (2) выражение (3) означает, что

на границе 2/1 происходит постоянный «отсос» атомов Al из твердого раствора, что приводит к нарушению закона сохранения массы. Алюминий практически нерастворим в оксиде меди Cu₂O (фаза 1), поэтому на границе фаз Cu/Cu₂O для диффузии атомов алюминия необходимо поставить условие II рода (равенство нулю потока Al), которое означает отсутствие взаимодействия между частицей Cu₂O и атомами алюминия, растворенными в медной матрице:

$$\begin{aligned} \mathbf{J}_{\mathrm{Al}}\Big|_{\mathbf{R}_{0}(t)} &= -\sum_{k} \mathbf{D}_{\mathrm{Alk}} \frac{\partial \mathbf{c}_{k}}{\partial \mathbf{r}}\Big|_{\mathbf{r}=\mathbf{R}_{0}(t)} = \mathbf{0};\\ \mathbf{k} &\equiv \mathbf{O}, \mathbf{Al}. \end{aligned} \tag{4}$$

На внешней границе сферической области $r = R_{\infty}$ задается условие симметрии, т. е. отсутствие диффузионных потоков атомов кислорода и алюминия:

$$\frac{\partial c_{AI}}{\partial r}\Big|_{r=R_{\infty}} = \frac{\partial c_{O}}{\partial r}\Big|_{r=R_{\infty}} = 0;$$

$$J_{AI}\Big|_{r=R_{\infty}} = J_{O}\Big|_{r=R_{\infty}} = 0.$$
(5)

Таким образом, к уравнению диффузии (1) ставятся нетривиальные граничные условия (2), (4) и (5).

Начальные условия включают исходную координату границы фаз 1/2 (при t = 0) и состав фазы 2:

$$\begin{split} R_{0}(t=0) &= R^{0}_{0}; \\ c_{O}(r > R^{0}_{0}, t=0) = 0; \\ c_{Al}(r > R^{0}_{0}, t=0) &= c^{0}_{Al}; \\ c_{Al}(r < R^{0}_{0}, t=0) &= 0, \end{split}$$

где c_{Al}^0 – исходная концентрация алюминия в твердом растворе на основе меди (фаза 1), которая близка к пределу растворимости; R_0^0 – начальный радиус частицы Cu₂O.

Коэффициенты диффузии определяются по закону Аррениуса:

$$D = D_0 \exp[-E/(RT)], \qquad (7)$$

где Е – энергия активации; D₀ – предэкс-

понент; R – универсальная газовая постоянная. Значения Е и D₀ для самодиффузии алюминия и кислорода в меди приведены в справочной литературе [2].

В любой точке оси 0r объемная доля сферических частиц фазы 3 (v) и ее производная по времени имеют вид:

$$\mathbf{v} = \frac{4}{3}\pi \mathbf{R}_{3}^{3}\mathbf{n}; \quad \frac{\partial \mathbf{v}}{\partial t} = 4\pi \mathbf{R}_{3}^{2}\mathbf{n}\frac{d\mathbf{R}_{3}}{dt}, \qquad (8)$$

где n – число зародышей фазы 3 (Al₂O₃) в единице объема; R_3 – их локальный радиус в данный момент времени, $R_3 = R_3(r, t)$.

Рост сферической частицы Al_2O_3 в твердом растворе, т.е. зависимость $R_3(t)$ определяется из условия баланса массы на поверхности частицы

$$(\rho_{3}c_{[i]3}^{0} - \rho_{2}c_{[i]23}^{0})WR_{3}\frac{dR_{3}}{dt} =$$

= -\rho_{2}J_{i}^{'} = \rho_{2}\sum_{k}D_{ik}(c_{k} - c_{[k]23}^{0});
i,k \equiv O,Al, (9)

где с $^{0}_{[i]23}$ – равновесная концентрация іго элемента (Al или O) в фазе 2 на границе с фазой 3 (Al₂O₃); J_i' – диффузионный поток i-го элемента в окрестности частицы Al₂O₃; ρ_3 – плотность фазы 3 (Al₂O₃) (ρ_3 = 3,96), г/см³.

В уравнении (9) величина W, характеризующая диффузионное взаимодействие дисперсных оксидных частиц в матрице твердого раствора, имеет вид:

$$W = 1 - \frac{3(1 + R_{3}(t)/R_{c})R_{3}(t)/R_{c}}{2[1 + R_{3}(t)/R_{c} + (R_{3}(t)/R_{c})^{2}]} = \frac{(2 - R_{3}(t)/R_{c}) - (R_{3}(t)/R_{c})^{2}}{2[1 + R_{3}(t)/R_{c} + (R_{3}(t)/R_{c})^{2}]},$$
 (10)

где R_c – радиус микроячейки в твердом растворе 2, в которой растет включение фазы 3.

Величина $R_{\rm c}$ определяется по формуле

$$\mathbf{R}_{\rm c} = \left[3/(4\pi n)\right]^{1/3}.$$
 (11)

Поскольку Al₂O₃ (фаза 3) - стехио-

метрическое соединение, для роста этих частиц в фазе 2 на границе 2/3 должно выполняться следующее простое соотношение для диффузионных потоков атомов Al и O:

$$J'_{Al}/J'_{O} = c^{0}_{[Al]3}/c^{0}_{[O]3}$$
. (12)

Однако в различных областях матрицы твердого раствора 2 из-за разных концентраций алюминия и кислорода это условие не соблюдается, т.е. рост может лимитироваться потоком либо атомов О, либо атомов Al, в зависимости от того, который из них оказывается меньше в данной точке оси 0г. Тогда, суммируя по i в уравнении (9), получим

$$\begin{split} & [(\rho_{3} / \rho_{2} - (c^{0}_{[O]23} + c^{0}_{[Al]23})]Wr_{3} \frac{dr_{3}}{dt} = \\ & = \begin{cases} -J^{'}_{Al}(1 + c^{0}_{[O]3} / c^{0}_{[Al]3}) & \text{при} \left| J^{'}_{Al} \right| < \left| J^{'}_{O} \right| \\ -J^{'}_{O}(1 + c^{0}_{[Al]3} / c^{0}_{[Ol]3}) & \text{при} \left| J^{'}_{O} \right| < \left| J^{'}_{Al} \right| \end{cases}, (13) \end{split}$$

где

$$J'_{i} = -\sum_{k} D_{ik} (c_{k} - c^{0}_{[k]23}); \quad i, k \equiv O, Al.$$
(14)

Обыкновенное дифференциальное уравнение (13) совместно с выражением (10) для величины W может быть решено численно (например, методом Рунге-Кутта) относительно г₃ в каждой точке оси 0г. Но прежде всего необходимо решить уравнение диффузии (1) с граничными условиями (2), (4), (5) и начальными условиями (6). Поскольку сформулированная задача является существенно нелинейной, ее решение может быть найдено только с использованием численных (конечно-разностных) методов.

Диффузионная задача в матричном безразмерном виде

Для численного решения запишем уравнение диффузии (1) в матричном виде:

$$(1-v)\frac{\partial C}{\partial t} = \frac{1}{r^2}\frac{\partial}{\partial r} \left[r^2(1-v)D\frac{\partial C}{\partial r}\right] - (C_3^0 - C)\frac{\partial v}{\partial t},$$
(15)

где С – вектор концентраций диффундирующих элементов в фазе 2, С = $(c_0 c_{Al})^T$; С⁰₃ – вектор концентраций элементов в фазе 3 (Al₂O₃), C⁰₃ = $(c^0_{[O]3} c^0_{[Al]3})^T$; D – матрица коэффициентов диффузии в фазе 2, D = (D_{ik}), i, k = O,Al; T – символ транспонирования.

Задачу необходимо обезразмерить. Для этого зададим масштабы величин: D_0 – характерное значение коэффициента диффузии при температуре отжига; $L \sim R_{\infty}$ – характерное расстояние; t_0 – характерное время диффузии, $t_0 = L^2/D_0$. Тогда, вводя безразмерные переменные и параметры:

$$\tau = t / t_{0}; \quad x = r / L;$$

$$r_{0} = R_{0} / L; \quad r_{3} = R_{3} / L;$$

$$r_{c} = R_{c} / L; \quad D = D / D_{0};$$

$$m = D_{0}t_{0} / L^{2}, \quad (16)$$

запишем уравнение (15) в безразмерном виде:

$$(1-v)\frac{\partial C}{\partial \tau} = \frac{m}{x^2}\frac{\partial}{\partial x} \left[x^2(1-v)\overline{D}\frac{\partial C}{\partial x}\right] - (C_3^0 - C)\frac{\partial v}{\partial \tau}.$$
 (17)

Перепишем уравнение (17) в виде, включающем диффузионные потоки:

$$x^{2}(1-v)\frac{\partial C}{\partial \tau} = -\frac{\partial \bar{J}}{\partial x} - x^{2}(C_{3}^{0}-C)\frac{\partial v}{\partial \tau}; \quad (18)$$

$$\overline{\mathbf{J}} = -\mathbf{m}\mathbf{x}^2(1-\mathbf{v})\overline{\mathbf{D}}\frac{\partial \mathbf{C}}{\partial \mathbf{x}},\qquad(19)$$

где \overline{J} – вектор безразмерных диффузионных потоков атомов О и Al, $\overline{J} = (\overline{J}_{O} - \overline{J}_{Al})^{T}$.

Тогда граничные условия (2) и (4) целесообразно записать в следующем виде:

$$r_0^2 (1 - v(r_0)) [(\rho_1 / \rho_2) c_{[0]1}^0 - c_{[0]21}^0] \frac{dr_0}{d\tau} = = -\overline{J}_0 \Big|_{x = r_0(\tau)};$$
 (20)

$$\left. \overline{J}_{Al} \right|_{x=r_0(\tau)} = 0.$$
 (21)

Построение разностной схемы

Для численного решения задачи воспользуемся конечно-разностными методами решения нелинейных уравнений в частных производных параболического типа [3–5].

В области пространства $r_0 \le x \le R_{\infty}/L$ построим неравномерную сетку { x_i , i = 1, ..., N} с переменным шагом h_i , i = 1, ..., N–1 по координате x. Точка x_1 соответствует $r_0(\tau)$ – текущей координате границы фаз 2/1, а точка $x_N = R_{\infty} / L$ – правому краю сферической области. Вместо непрерывного времени τ введем дискретное τ_j с переменным шагом $\Delta \tau_j$. Перейдем от непрерывных функций C, v и \overline{D} к дискретным, заданным на этой сетке.

Для построения разностных аналогов уравнений (18)–(21) воспользуемся универсальным интегроинтерполяционным методом, или методом баланса [3–5], который обеспечивает выполнение условия сохранения массы, лежащего в основе уравнения диффузии, на дискретной сетке.

Разностная аппроксимация диффузионного уравнения

Проинтегрируем уравнение диффузии (18) по элементарной ячейке пространственной сетки, т. е. от x_{i-1/2} до x_{i+1/2}:

$$\int_{x_{i-1/2}}^{x_{i+1/2}} x^{2} (1-v) \frac{\partial C}{\partial \tau} dx =$$

$$= \overline{J}\Big|_{x_{i-1/2}} - \overline{J}\Big|_{x_{i+1/2}} - \int_{x_{i-1/2}}^{x_{i+1/2}} x^{2} (C_{3}^{0} - C) \frac{\partial v}{\partial \tau} dx;$$

$$\overline{J}\Big|_{x_{i\pm 1/2}} \equiv \overline{J}_{i\pm 1/2}.$$
(22)

Аппроксимируем интегралы в уравнении (22) простыми квадратурными формулами и возьмем чисто неявную разностную схему:

$$\begin{array}{l} \sum\limits_{x_{i-1/2}}^{x_{i+1/2}} x^{2}(1-v) \frac{\partial C}{\partial \tau} dx \approx \frac{1}{3}(1-v_{i}^{j+1}) \times \\ \times \frac{C_{i}^{j+1}-C_{i}^{j}}{\Delta \tau_{j}} \cdot (x_{i+1/2}^{3}-x_{i-1/2}^{3}); \end{array} \tag{23}$$

 $\begin{aligned} & \sum_{x_{i-1/2}}^{x_{i+1/2}} x^{2} (C_{3}^{0} - C) \frac{\partial v}{\partial \tau} dx \approx \frac{1}{3} (C_{3}^{0} - C) \times \\ & \times \frac{v_{i}^{j+1} - v_{i}^{j}}{\Delta \tau_{j}} \cdot (x_{i+1/2}^{3} - x_{i-1/2}^{3}). \end{aligned}$ (24)

Поскольку $x_{i+1/2} = x_i + h_i / 2$, $x_{i-1/2} = x_i - h_{i-1} / 2$, последний сомножитель в правой части выражений (23) и (24) выразится в виде:

$$x_{i+1/2}^{3} - x_{i-1/2}^{3} = \frac{3}{2} x_{i}^{2} (h_{i} + h_{i-1}) + \frac{3}{4} x_{i} (h_{i}^{2} - h_{i-1}^{2}) + \frac{1}{8} (h_{i}^{3} + h_{i-1}^{3}) \approx \frac{3}{2} x_{i}^{2} (h_{i} + h_{i-1})$$
(25)

(с точностью до членов первого порядка малости).

С учетом выражения (25) интегралы (23) и (24) запишутся как

$$\begin{aligned} & \stackrel{x_{i+1/2}}{\underset{x_{i+1/2}}{\int}} x^2 (1-v) \frac{\partial C}{\partial \tau} dx \approx x_i^2 (1-v_i^{j+1}) \times \\ & \times (C_i^{j+1} - C_i^j) \cdot \frac{h_i + h_{i-1}}{2\Delta \tau_i}; \end{aligned}$$
(26)

$$\int_{x_{i-1/2}}^{x_{i+1/2}} x^2 (C_3^0 - C) \frac{\partial v}{\partial \tau} dx \approx x_i^2 (C_3^0 - C) \times \\ \times (v_i^{j+1} - v_i^j) \cdot \frac{h_i + h_{i-1}}{2\Delta \tau_j}.$$
(27)

Для определения конечноразностных выражений для потока $\overline{J}_{i-1/2}$, входящего в уравнение (22), проинтегрируем формулу (19) от x-1 до x:

$$\int_{x_{i-1}}^{x_i} \overline{J} dx = -m \int_{x_{i-1}}^{x_i} x^2 (1-v) \overline{D} \frac{\partial C}{\partial x} dx .$$
 (28)

Аппроксимируя интегралы, входящие в формулу (28), получим

$$\overline{J}_{i-1/2}h_{i-1} \approx -m(1-v_{i-1/2}^{j+1})\overline{D}_{i-1/2}^{j+1} \int_{x_{i-1}}^{x_i} x^2 dC.$$
 (29)

Интеграл в правой части выражения (29) определим методом интегрирования по частям:

$$\int_{x_{i-1}}^{x_{i}} x^{2} dC = x_{i}^{2} C_{i}^{j+1} - x_{i-1}^{2} C_{i-1}^{j+1} - \int_{x_{i-1}}^{x_{i}} C dx^{2} \approx x_{i}^{2} C_{i}^{j+1} - x_{i-1}^{2} C_{i-1}^{j+1} - C_{i-1/2} (x_{i}^{2} - x_{i-1}^{2}).$$
(30)

В силу непрерывности диффузионного потока $C_{i-1/2} \approx (C_{i-1} + C_i) / 2$. Последний член в правой части формулы (30) имеет вид:

$$x_{i}^{2} - x_{i-1}^{2} = 2x_{i}h_{i-1} - h_{i-1}^{2} \approx 2x_{i}h_{i-1}$$
 (31)

(с точностью до членов первого порядка малости).

Тогда из формул (29)–(31) получим выражение для диффузионного потока $\overline{J}_{i-1/2}$:

$$\begin{split} \overline{J}_{i-1/2} &= -x_i^2 m(1 - v_{i-1/2}^{j+1}) \overline{D}_{i-1/2}^{j+1} \times \\ \times \frac{C_i^{j+1} - C_{i-1}^{j+1}}{h_{i-1}} \frac{x_{i-1}}{x_i}. \end{split} \tag{32}$$

Интегрируя формулу (19) от x до x+1 и проводя аналогичные выкладки, получим выражение для потока $\overline{J}_{i+1/2}$:

$$\overline{J}_{i+1/2} = -x_i^2 m(1 - v_{i+1/2}^{j+1}) \times \overline{D}_{i+1/2}^{j+1} \frac{C_{i+1}^{j+1} - C_i^{j+1}}{h_i} x_{i+1}}{k_i}.$$
 (33)

Значения функции v в полуцелых точках определяются как полусумма значений в соседних целых точках: $v_{i\pm 1/2} = (v_i + v_{i\pm 1})/2$. Для коэффициентов диффузии, зависящих от концентрации, аналогичные величины определяются по следующей формуле [3, 5, 6]:

$$\overline{\mathbf{D}}_{i\pm 1/2}^{j+1} = \overline{\mathbf{D}} \Big((\mathbf{C}_{i}^{j+1} + \mathbf{C}_{i\pm 1}^{j+1})/2 \Big).$$
(34)

Введем обозначения:

$$\begin{split} \mathbf{G}_{i\pm 1/2}^{j+1} &= \frac{1 - \mathbf{v}_{i\pm 1/2}^{j+1}}{1 - \mathbf{v}_{i}^{j+1}} \overline{\mathbf{D}}_{i\pm 1/2}^{j+1}; \\ \bar{\mathbf{f}}_{i}^{j+1} &= \frac{\mathbf{v}_{i}^{j+1} - \mathbf{v}_{i}^{j}}{1 - \mathbf{v}_{i}^{j+1}}; \quad \boldsymbol{\omega}_{i} = \frac{\mathbf{h}_{i}}{\mathbf{h}_{i-1}}; \\ \bar{\boldsymbol{h}}_{i} &= \frac{\mathbf{h}_{i} + \mathbf{h}_{i-1}}{2}; \quad \boldsymbol{\sigma}_{i} = \frac{\bar{\boldsymbol{h}}_{i}\mathbf{h}_{i}}{2\Delta\tau_{j}}. \end{split}$$
(35)

Подставляя выражения (26), (27), (32) и (33) в формулу (22) и используя обозначения (35), после преобразований получим разностную схему для внутренних точек сетки, которую запишем в каноническом трехточечном виде:

$$A_{i}^{j+1}C_{i-1}^{j+1} - B_{i}^{j+1}C_{i}^{j+1} + \Gamma_{i}^{j+1}C_{i+1}^{j+1} = \Delta_{i}^{j+1};$$

$$i = 2, ..., N-1,$$
(36)

где

$$\begin{split} \mathbf{A}_{i}^{j+1} &= m\omega_{i}\mathbf{x}_{i-1}\mathbf{G}_{i-1/2}^{j+1}; \quad \Gamma_{i}^{j+1} = m\mathbf{x}_{i+1}\mathbf{G}_{i+1/2}^{j+1}; \\ \mathbf{B}_{i}^{j+1} &= \mathbf{A}_{i}^{j+1} + \Gamma_{i}^{j+1} + \sigma_{i}\mathbf{x}_{i}(1 - \mathbf{f}_{i}^{j+1})\mathbf{E}; \\ \mathbf{\Delta}_{i}^{j+1} &= \sigma_{i}\mathbf{x}_{i}(\mathbf{f}_{i}^{j+1}\mathbf{C}_{3}^{0} - \mathbf{C}_{i}^{j}), \end{split}$$
(37)

где Е – единичная диагональная матрица: Е = (e_{ik}), $e_{ik} = \delta_{ik}$, где δ_{ik} – символ Кронекера (1 – при i = k, 0 – при $i \neq k$).

Тем самым уравнения диффузии (18) аппроксимированы конечными разностями.

Разностная аппроксимация граничных условий

Поскольку диффузионные потоки в разностном виде $J_{i\pm 1/2}$ заданы в полуцелых точках (формулы (32), (33)), для аппроксимации граничных условий необходимо определить потоки в точках i = 1 и i = N.

В точке N, т. е. на границе сферической области $x_N = R_{\infty} / L$, поставлено условие (5). Выразим связь между потоками в точках N и N-1/2 путем разложения в ряд Тейлора, ограничиваясь членами 1го порядка малости:

$$\overline{\mathbf{J}}_{\mathrm{N}-1/2} = \overline{\mathbf{J}}_{\mathrm{N}} - \frac{\mathbf{h}_{\mathrm{N}-1}}{2} \frac{\partial \overline{\mathbf{J}}}{\partial \mathbf{x}}\Big|_{\mathbf{x}_{\mathrm{N}}} = 0, \qquad (38)$$

где поток $J_{N-1/2}$ задан формулой (32), в которой надо положить i = N.

Из уравнения (18)

$$\frac{\partial \bar{J}}{\partial x}\Big|_{x_{N}} = -x_{N}^{2} \left[(1 - v_{N}) \frac{\partial C}{\partial \tau} \Big|_{x_{N}} + (C_{3}^{0} - C_{N}) \frac{\partial v}{\partial \tau} \Big|_{x_{N}} \right].$$
(39)

Аппроксимируем производные в точке N в выражении (39):

$$\frac{\partial C}{\partial \tau}\Big|_{x_{N}} = \frac{C_{N}^{j+1} - C_{N}^{j}}{\Delta \tau_{j}}, \quad \frac{\partial v}{\partial \tau}\Big|_{x_{N}} = \frac{v_{N}^{j+1} - v_{N}^{j}}{\Delta \tau_{j}}. \quad (40)$$

Используя (38)–(40) и (32) и вводя обозначение $\sigma_N = h^2_{N-1}/(2\Delta \tau_j)$, получим разностную аппроксимацию граничного условия в точке i = N, которую запишем в удобном для последующего анализа двухточечном виде:

$$[mx_{N-1}G_{N-1/2}^{j+1} + \sigma_{N}x_{N}(1-f_{N}^{j+1})E]C_{N}^{j+1} = = mx_{N-1}G_{N-1/2}^{j+1}C_{N-1}^{j+1} + \sigma_{N}x_{N}(C_{N}^{j} - f_{N}^{j+1}C_{3}^{0}).$$
(41)

Необходимо представить в разностном виде условия (20) и (21) на границе фаз 2/1. Связь между известным диффузионным потоком в точке $i = 1\frac{1}{2}$ (формула (33)) и неизвестным потоком в точке i = 1определим аналогично выражению (38) с помощью разложения в ряд Тейлора:

$$\bar{J}_{1\frac{1}{2}} = \bar{J}_1 + \frac{h_1}{2} \frac{\partial \bar{J}}{\partial x}\Big|_{x_1} = 0.$$
 (42)

Используя уравнения (39) и (40), в которых x_N надо заменить на x_1 , из выражений (42) и (33), вводя параметр $\sigma_1 = h^2_1/(2\Delta \tau_j)$ и применяя обозначения (35), получим в точке i = 1 разностную аппроксимацию вектора диффузионных потоков \bar{J}_1 , которую удобно записать в виде:

$$\frac{x_{1}h_{1}}{1-v_{1}^{j+1}}\overline{J}_{1} = -x_{1}^{2}mG_{1\frac{j}{2}}^{j+1} \cdot (C_{2}^{j+1}-C_{1}^{j+1})x_{2} + +x_{1}^{3}\sigma_{1}(C_{1}^{j+1}-C_{1}^{j}) + x_{1}^{3}\sigma_{1}f_{1}^{j+1}(C_{3}^{0}-C_{1}^{j+1}), \quad (43)$$

где G – матрица размером 2×2; C – вектор концентраций в фазе 2, C = $(c_0 c_{Al})^T$; J – вектор размера 2.

На движущейся границе фаз 2/1 x = $r_0(\tau)$, т. е. в точке i = 1 (x = x_1), как видно из условия (20), поддерживается постоянная концентрация кислорода, соответствующая равновесному пределу растворимости кислорода в Си. Тогда в дискретном виде запишем

$$c_{O,1}^{j+1} = c_{O,1}^{j} = c_{[O]21}^{0}$$
 (44)

Выразив из (43) поток атомов кислорода, подставим его в граничное условие (20). С учетом (44) и помня, что $h_1 = x_2 - x_1$, получим дифференциальноразностное уравнение

$$\begin{aligned} \frac{x_{1}(x_{2}-x_{1})^{2}}{2\Delta\Delta} f_{1}^{j+1}(c_{10j3}^{0}-c_{10j21}^{0}) + \\ + x_{1}(x_{2}-x_{1})(\frac{\rho_{1}}{\rho_{2}}c_{10j1}^{0}-c_{10j21}^{0})\frac{dx_{1}}{d\tau} = \\ = x_{2}m[G_{100,1\frac{1}{2}}^{j+1}(c_{0,2}^{j+1}-c_{10j21}^{0}) + \\ + G_{10Aj,1\frac{1}{2}}^{j+1}(c_{Al,2}^{j+1}-c_{Al,1}^{j+1})], \end{aligned}$$
(45)

где $G_{(ik),1\frac{1}{2}}^{j+1}$; i, k = O,Al – соответствующий компонент матрицы G в полуцелой точке 1½ на (j+1)-м слое по времени.

Решая уравнение (45), получим новую координату границы фаз 2 и 1 на (j+1)-м слое – величину x_1^{j+1} .

Далее, из (43) с использованием (44) выразим поток атомов Al и, подставив его в граничное условие (21), получим разностную аппроксимацию условия по алюминию на границе фаз 2/1, которое запишем в двухточечном виде:

$$\begin{split} & [x_{2}mG_{(AIAI),1\frac{j}{2}}^{j+1} + \sigma_{1}x_{1}(1-f_{1}^{j+1})]c_{AI,1}^{j+1} = \\ & = x_{2}mG_{(AIO),1\frac{j}{2}}^{j+1}c_{O,2}^{j+1} + x_{2}mG_{(AIAI),1\frac{j}{2}}^{j+1}c_{AI,2}^{j+1} - \\ & - x_{2}mG_{(AIO),1\frac{j}{2}}^{j+1}c_{O,2}^{0} + \sigma_{1}x_{1}(c_{AI,1}^{j} - f_{1}^{j+1}c_{AI,3}^{0}). \end{split}$$
(46)

Таким образом, все граничные условия выражены в разностной форме.

Метод прогонки

Для численного решения системы полученных разностных уравнений (36), (37), (41), (44) и (46) будем использовать эффективный и экономичный метод векторной (или матричной) прогонки [3–5]. Формула прогонки для вычисления значений вектора концентрации на новом (j+1)-м слое в точке i–1 по его значению в точке i имеет вид:

$$C_{i-1}^{j+1} = Q_{i-1/2}C_i^{j+1} + S_{i-1/2}, \quad i = 2, ..., N,$$
 (47)

где Q – матрица прогоночных коэффициентов размером 2×2 ; S – вектор размера 2, которые по своему смыслу относятся к полуцелым точкам $i\pm\frac{1}{2}$.

Значения Q и S определяются по изложенной ниже процедуре.

Подставив формулу (47) в разностную схему (36) для внутренних точек i = 2, ..., N–1, получим рекуррентные выражения для вычисления прогоночных коэффици-ентов:

$$Q_{i+1/2} = (B_i^{j+1} - A_i^{j+1}Q_{i-1/2})^{-1}\Gamma_i^{j+1};$$

$$S_{i+1/2} = (B_i^{j+1} - A_i^{j+1}Q_{i-1/2})^{-1} \times$$

$$\times (A_i^{j+1}S_{i-1/2} - \Delta_i^{j+1}); \quad i = 2, ..., N-1.$$
(48)

Подставляя выражение (47) в разностную аппроксимацию граничных условий на правом крае счетной области (41), получим формулу для вычисления значений концентраций на (j + 1)-м временном слое в точке i = N:

$$\begin{split} \mathbf{U}_{N} &= [\mathbf{m} \mathbf{x}_{N-1} \mathbf{G}_{N-1/2}^{j+1} (\mathbf{E} - \mathbf{Q}_{N-1/2}) + \\ &+ \sigma_{N} \mathbf{x}_{N} (1 - \mathbf{f}_{N}^{j+1}) \mathbf{E}]^{-1}; \\ \mathbf{C}_{N}^{j+1} &= \mathbf{U}_{N} [\mathbf{m} \mathbf{x}_{N-1} \mathbf{G}_{N-1/2}^{j+1} \mathbf{S}_{N-1/2} + \\ &+ \sigma_{N} \mathbf{x}_{N} (\mathbf{C}_{N}^{j} - \mathbf{f}_{N}^{j+1} \mathbf{C}_{3}^{0})]. \end{split} \tag{49}$$

Осталось определить прогоночные коэффициенты $Q_{1\prime_2}$ и $S_{1\prime_2}$ на левом крае счетной области. Поскольку здесь гра-

ничные условия заданы по-разному для атомов О и Al (см. формулы (44) и (46)), значения матриц $Q_{1\frac{1}{2}}$ и $S_{1\frac{1}{2}}$ можно определить только поэлементно.

Распишем формулу прогонки (47) в поэлементном виде для i = 2:

$$c_{O,1}^{j+1} = Q_{(11),1\frac{1}{2}} c_{O,2}^{j+1} + Q_{(12),1\frac{1}{2}} c_{Al,2}^{j+1} + S_{(1),1\frac{1}{2}}; (50)$$

$$c_{Al,1}^{j+1} = Q_{(21),1\frac{1}{2}} c_{O,2}^{j+1} + Q_{(22),1\frac{1}{2}} c_{Al,2}^{j+1} + S_{(2),1\frac{1}{2}}, (51)$$

где $Q_{(ik),1/2}$, $S_{(i),1/2}$ – соответствующие элементы матриц Q и S в точке 1/2. Тогда, сравнивая выражения (50) и (44), получим

$$Q_{(11),1\frac{1}{2}} = 0; \quad Q_{(12),1\frac{1}{2}} = 0; \quad S_{(1),1\frac{1}{2}} = c^{0}_{[O]21}.$$
 (52)

Сопоставляя формулы (51) и (46), получим выражения для остальных элементов матриц Q и S в точке 1¹/₂:

$$u_{1} = mx_{2}G_{(AIAI),1\frac{1}{2}}^{j+1} + \sigma_{1}x_{1}^{j+1}(1-f_{1}^{j+1});$$

$$Q_{(21),1\frac{1}{2}} = mx_{2}G_{(AIO),1\frac{1}{2}}^{j+1}/u_{1};$$

$$Q_{(22),1\frac{1}{2}} = mx_{2}G_{(AIAI),1\frac{1}{2}}^{j+1}/u_{1};$$

$$S_{(2),1\frac{1}{2}} = [-x_{2}mG_{(AIO),1\frac{1}{2}}^{j+1}c_{[O]21}^{0} + \frac{1}{2}c_{[O]21}^{0} + \frac{1}{2}c$$

$$+ \sigma_1 x_1^{j+1} (c_{Al,1}^j - f_1^{j+1} c_{[Al]3}^0)] / u_1.$$
(53)

Таким образом, определены все прогоночные коэффициенты вдоль оси x, а также концентрации диффундирующих элементов на правом крае счетной области C_N^{j+1} .

Алгоритм расчета

Расчет по описанной выше конечно-разностной схеме производится в следующей последовательности. Вначале по формулам (48), (52), (53), где матрицы A, B, Γ , Δ заданы выражениями (37), на основе известных концентраций

элементов на предыдущем (ј-м) временном слое вычисляются прогоночные коэффициенты во всех точках оси х (так называемый «прямой ход» прогонки). Затем по формуле (49) рассчитывается вектор C_N^{j+1} – концентрации О и Al на новом (j + 1)-м слое по времени в точке i = N. После этого по выражению прогонки (47) вычисляются значения концентрации кислорода и алюминия C_i^{j+1} в фазе 2 на (j + 1)-м временном слое во всех точках i = N - 1, ..., 1 (так называемый «обратный ход» прогонки). Затем путем численного решения обыкновенного дифференциального уравнения (45) относительно величины х1 с использованием стандартного метода Рунге-Кутта 4-го порядка точности определяется новая координата границы фаз 2/1 на (j + 1)-м слое – значение x_1^{j+1} . Кроме того, на данном слое по времени в каждой точке оси х методом Рунге-Кутта решается обыкновенное дифференциальное уравнение (13) (с учетом формулы (10)) относительно величины r₃ – радиуса включений фазы 3 (Al₂O₃) в матрице фазы 2. Далее по формуле (8) вычисляется новое значение объемной доли фазы 3 в каждой точке – величина v_i^{j+1}. Поскольку задача является нелинейной, полученные

значения C, v и x₁ подставляются в соответствующие формулы и расчет повторяется, т. е. осуществляется итерационный цикл. Здесь использован метод простой итерации. Расчет на данном временном слое повторяется до достижения сходимости, т. е. до получения относительной заданной точности $\varepsilon \sim 10^{-5}$ по величинам C, v и x₁ на двух последовательных итерациях. После этого происходит переход на следующий слой по времени. Расчет завершается при достижении заранее заданного максимального времени или при полном растворении частицы фазы 1 (Cu₂O).

Результаты моделирования

На рис. 1 и 2 показаны результаты численного моделирования растворения сферической частицы Cu₂O в медной матрице при температуре 900 °C (1173 K). Значения коэффициентов диффузии кислорода и алюминия в меди, определенные по [2], приведены в табл. 1.

В связи с отсутствием в литературе сведений о значениях недиагональных (перекрестных) коэффициентов диффузии D_{OAI} и D_{AIO} в меди, их полагали равными нулю.

Рис. 1. Кинетика растворения сферического включения Cu_2O с исходным радиусом $R_0^0 = 0.4L$ (1) $R_0^0 = 0.2L$ (2) в твердом растворе на основе меди при T = 1173 K в безразмерных координатах

Mete

Рис. 2. Распределение безразмерного радиуса включений фазы 3 (Al₂O₃) вдоль безразмерной сферической координаты в твердом растворе на основе меди при T = 1173; масштаб L = $R_{\infty} = 100$ мкм, безразмерный исходный радиус фазы 1 (Cu₂O) $r_0^0 = 0,2$

Табл. 1. Параметры самодиффузии атомов алюминия и кислорода в меди (фаза 2) [2]

Атом	D* ₀ , см²/с	Е, кДж/моль	Примечание	D*(T = 1173 K), cm^2/c
Al O	0,61 1,76·10 ⁻²	197,5 66,94	T = 8001040 °C; с _{A1} ≈ 5,3 % масс. T = 8001030 °C	9,8 $\cdot 10^{-10}$ 1,84 $\cdot 10^{-5}$

Предел растворимости кислорода в меди при T = 1173 K составляет $c^{0}_{[O]21} = 1,53 \cdot 10^{-3} (1,53 \cdot 10^{-5} \% \text{ масс.})$ [7]. Исходное содержание алюминия в твердом растворе $c_{Al}(x, t = 0)$ принимали равным пределу растворимости при указанной температуре $c^{0}_{Al} = 0,08 (8 \% \text{ масс.})$ [8]. Расчеты проводили в безразмерных величинах для разных отношений исходного радиуса частицы Cu₂O (R_{0}^{0}) к радиусу макроячейки $R_{\infty} / L \sim 1$.

Как видно из рис. 1, форма зависимости безразмерного радиуса частицы r_0 от безразмерного времени τ близка к полученной по приближенному аналитическому решению [9, 10]. Это связано с тем, что лимитирующей стадией растворения в обоих случаях является один и тот же физический процесс – диффузионный массоперенос в сферической симметрии. Однако, по сравнению с аналитическим расчетом по формулам [9], время растворения исходной сферической частицы Cu₂O в медной матрице сокращается более чем на порядок величины. Это связано со стоком атомов кислорода, диффундирующих вглубь меди от границы Cu₂O/Cu, в растущие дисперсные частицы Al₂O₃, которые в данной ситуации играют роль геттера («химического отсоса»). Следовательно, наличие алюминия, растворенного в медной матрице, приводит к существенному ускорению растворения Cu₂O за счет указанного эффекта.

Как видно из рис. 2, максимальный размер образующихся дисперсных частиц оксида алюминия $R_3^{(max)}$ приходится на радиальную координату, близкую к исходному положению границы Cu₂O с медной матрицей R_0^0 . Рост включений

 Al_2O_3 во «внешней» области (при r > R_0^{0}) лимитируется диффузией кислорода от движущейся границы Cu₂O/Cu, поскольку содержание алюминия в твердом растворе на основе меди достаточно велико. Во «внутренней» области (при r < R_0^{0}) лимитирующей стадией роста частиц Al_2O_3 является диффузионный массоперенос атомов алюминия из медной матрицы, который протекает медленнее, чем встречная диффузия кислорода.

Заключение

Таким образом, разработан численный метод решения новой, нетривиальной задачи о внутреннем окислении в трехкомпонентной системе – диффузионно-контролируемое растворение сферического включения оксида меди Cu₂O в твердом растворе Cu(Al), сопровождающееся образованием и ростом дисперсных частиц упрочняющей фазы (оксида Al₂O₃) в медной матрице в процессе отжига. Указанный метод позволяет синтезировать новые композиционные материалы на основе меди, упрочненные дисперсными оксидными включениями нанометрического размера, и является в последние годы предметом интенсивных экспериментальных исследований [11-14]. При этом исходную матрицу с относительно крупными включениями фазы Си₂О (источник кислорода) получают путем механического легирования, дисперсно-упрочненный конечный а композит формируется при последующем отжиге.

Разработанная математическая модель позволяет оценить время полного растворения частиц Cu₂O, которые являются источником кислорода при внутреннем окислении, а также оценить размер и пространственное распределение дисперсных включений упрочняющей фазы (Al₂O₃) в матрице. Численными расчетами установлено, что максимальный размер дисперсных частиц Al₂O₃ приходится на исходную границу Cu₂O с медной матрицей R_0^0 . Рост включений Al_2O_3 во «внешней» области (при r > R_0^0) лимитируется диффузией кислорода от границы Cu_2O/Cu , а во «внутренней» области (при r < R_0^0) – диффузией атомов алюминия из матрицы, которая протекает медленнее, чем встречная диффузия кислорода. Растворение частиц Cu_2O осуществляется существенно быстрее, чем в отсутствии алюминия в твердом растворе, когда не образуются дисперсные включения Al_2O_3 в матрице, т.е. рост последних, контролируемый диффузией кислорода, играет роль теттера по отношению к исходной частице Cu_2O .

Полученные результаты могут быть использованы при создании новых дисперсно-упрочненных композиционных материалов на основе контролируемого сочетания механического легирования и диффузионного отжига, для выбора оптимального режима отжига, при котором протекает внутреннее окисление, для предсказания структуры (максимального размера и пространственного распределения дисперсных включений по размерам) и, следовательно, свойств конечного продукта.

СПИСОК ЛИТЕРАТУРЫ

1. Ловшенко, Г. Ф. Макрокинетическая математическая модель внутреннего окисления сплавов на основе меди при отжиге механически легированных композиций системы Cu-Al-CuO / Г. Ф. Ловшенко, Б. Б. Хина // Вестн. Белорус.-Рос. ун-та. – 2006. – № 4. – С. 139–148.

2. Смитлз, К. Дж. Металлы : справочник : пер. с англ. / К. Дж. Смитлз. – М. : Металлургия, 1980. – 447 с.

3. Самарский, А. А. Введение в теорию разностных схем / А. А. Самарский – М. : Наука, 1971. – 552 с.

4. Годунов, С. К. Разностные схемы. Введение в теорию / С. К. Годунов, В. С. Рябенький. – М. : Наука, 1977. – 400 с.

5. **Калиткин, Н. Н.** Численные методы / Н. Н. Калиткин – М. : Наука, 1978. – 512 с.

6. Ворошнин, Л. Г. Диффузионный массоперенос в многокомпонентных системах / Л. Г. Ворошнин, Б. М. Хусид. – Минск : Наука и техника, 1979. – 255 с.

7. **Фромм, Е.** Газы и углерод в металлах / Е. Фромм, Е. Гебхардт. – М. : Металлургия,

1980. – 456 c.

8. Двойные и многокомпонентные системы на основе меди : справочник / Под ред. М. Е. Дрица. – М. : Наука, 1979. – 248 с.

9. Любов, Б. Я. Диффузионные процессы в неоднородных твердых средах / Б. Я. Любов. – М.: Наука, 1981. – 295 с.

10. Ловшенко, Г. Ф. Моделирование растворения металлических включений при отжиге механически легированных сплавов / Г. Ф. Ловшенко, Ф. Г. Ловшенко, Б. Б. Хина // Вестн. Белорус.-Рос. ун-та. – 2006. – № 1. – С. 112–124.

11. Internal oxidation of dilute Cu-Al alloy powers with oxidant of Cu_2O / Kexing Song [etc.] // Materials Science and Engineering A. – 2004. –

Vol. 380, № 1–2. – P. 117–122.

12. Fabrication of the nanometer Al_2O_3/Cu composite by internal oxidation / Li Guobin [etc.] // Journal of Materials Processing Technology. – 2005. – Vol. 170, № 1–2. – P. 336–340.

13. **Shuhua**, **Liang**. Internal oxidation of Cr in Cu-Cr/Cu₂O composite powder prepared by mechanical activation / Liang Shuhua, Fang Liang, Fan Zhikang // Materials Science and Engineering A. – 2004. – Vol. 374, N 1–2. – P. 27–33.

14. Kinetic analysis on Al_2O_3/Cu composite prepared by mechanical activation and internal oxidation / Shuhua Liang [etc.] // Composites A : Applied Science and Manufacturing. – 2004. – Vol. 35, N_2 12. – P.1441–1446.

Белорусско-Российский университет Материал поступил 24.01.2007

G. F. Lovshenko, B. B. Khina Diffusion dissolution oxide insertions within copper matrix and strengthening phase dispersion particles upsurge mathematic modeling Belarusian-Russian University

The method for solution of a new, non-trivial task of internal of internal oxidation within threecomponent system, i. e. diffusionally-controlled dissolution of spherical insertions of Cu₂O copper oxide within Cu(Al) solid solution along with creation and subsequent increase of dispersion particles of Al₂O₃ (aluminum oxide) strengthening phase within copper matrix in the process of annealing has been developed. The model developed allows estimating the time of complete dissolving Cu₂O particles which are the source of oxygen during internal oxidation and also to assess the dimensions and space distribution of dispersion insertions of Al₂O₃ strengthening phase within the matrix.

Машиностроение. Металлургия