УДК 666.295 ВЛИЯНИЕ АЛЮМОСОДЕРЖАЩИХ ОТХОДОВ НА СИНТЕЗ ПИГМЕНТОВ СО СТРУКТУРОЙ МУЛЛИТА

А. С. ПОЛЕВОДА

Научный руководитель И. В. ПИЩ, д-р техн. наук, проф. Учреждение образования «БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ» Минск, Беларусь

В последние годы наметились новые тенденции применения более дешевых сырьевых материалов – отходов производства, которые могут рассматриваться как техногенное сырьё для производства пигментов. В настоящее время возрастает потребность в пигментах с расширенной цветовой палитрой для окрашивания керамических масс, глазурей, мастик. В основу синтеза пигментов положено использование техногенного алюмосодержащего отхода катализатора нефтеперерабатывающей промышленности. При синтезе пигментов протекают твердофазные реакции с образованием окрашенных кристаллических структур. В частности при синтезе пигментов на основе муллита 3Al₂O₃·2SiO₂ при термообработке кристаллическую структуру внедряются В хромофоры (Сr, Fe, Ni, Co, Mn, Ti). Для активизации процессов пигментообразования вводятся минерализаторы (Na₂SiO₃, H_3BO_3), способствующие снижению температуры синтеза.

В работе взамен технического глинозема вводили катализатор, содержащий до 50 % Al_2O_3 . С учетом химического состава катализатора проводили подшихтовку SiO_2 , чтобы получить состав соответствующий муллиту. В качестве хромофоров выступали соли нитрата хрома $Cr(NO_3)_3 \cdot 9H_2O$ и нитрата железа $Fe(NO_3)_3 \cdot 9H_2O$, а также оксиды переходных металлов (Cr_2O_3 , Fe_2O_3 , Co_2O_3 , NiO, TiO_2 , MnO_2).

Синтез пигментов осуществлялся путем мокрого и сухого помола алюмосодержащего отхода с кварцевым песком и оксидами переходных металлов с добавлением минерализаторов. Синтез проводили в электрической печи при температурах 1000–1100–1150 °C с выдержкой при максимальной температуре в течение 1 часа.

Шихтовой состав бордового пигмента в мас. % : алюмосодержащий отход -2.5; кварцевый песок -2.0; оксид железа (Fe₂O₃) -0.5.

В результате синтеза установили цветовые характеристики пигментов и определили оптимальные температуры. Как и следовало ожидать, полученный бордовый пигмент обладает чистотой тона 20–30 % и доминирующей длиной волны 560–590 нм.

