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This article presents some new PhD students’ results in qualitative theory 

of differential equations. Previous reviews on this topic can be found in [1, 2]. 
1. On the behavior of solutions to differential equations with general 

power-law nonlinearities (T. Korchemkina) [3–5] 
For the equation  
 
ᇱᇱݕ  ൌ ,ݔሺ݌ ,ݕ ,ᇱሻݕ	ݕሺ	sgn	ᇱ|௞భݕ|௞బ|ݕ|	ሻ′ݕ 							݇଴, ݇ଵ ൐ 0, (1) 
 

with positive continuous in ݔ and Lipschitz continuous in ݑ,  function ݒ
,ݔሺ݌ ,ݑ -ሻ, the qualitative and asymptotic behavior of solutions is studied. Reݒ
sults on the qualitative behavior of solution depending on nonlinearity exponents 
are presented in [3]. The asymptotic behavior of solutions unbounded near their 
domain boundaries is described both in the cases of constant and non-constant 
potential in [4].   

Problem 1. Compare the asymptotic behavior of solutions to equation (1) 
for the cases  	݇ଵ ൐ 0 and 	݇ଵ ൌ 0 (see [6, Ch. V], [7]). 

 
Theorem 1.1  Suppose ݇଴, ݇ଵ 	൐ 	0. Let ݌ሺݔ, ,ݑ  ሻ be a positive continuousݒ

in ݔ and Lipschitz continuous in ݑ, -function. Then the set of all maximally ex ݒ
tended solutions to equation (1) can be divided into the following five types ac-
cording to their behavior: 

0) constant solutions, 
1) increasing positive solutions, 
2) increasing negative solutions, 
3) increasing solutions negative near the left boundary of their domain and 

positive near the right one, 
4) decreasing solutions positive near the left boundary of their domain and 

negative near the right one.  

Put                          ߙ ൌ
ଶି௞భ

௞బା௞భିଵ
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ሺܲሻܦ ൌ ቆ
	ߙ|௞బ|ߙ| ൅ 	1|

ܲ
ቇ

ଵ
௞బା௞భିଵ

, ܲ ∈ Թ. 

Theorem 1.2 Suppose ݇଴ ൅ ݇ଵ ൐ 1, ݇ଵ ൏ 2	ሺ݄݁݊ܿ݁	ߙ ൐ 0ሻ, and the func-
tion ݌ሺݔ, ,ݑ ,ݑ Lipschitz continuous in ,ݔ ሻ is positive, continuous inݒ  and has ݒ
a positive limit ௔ܲ as ݔ → ܽ, ݑ → ൅∞, ݒ → ൅∞ for any ܽ ∈ Թ. Then every in-
creasing solution to equation (1) has a vertical asymptote ݔ	 ൌ 	 -with the fol ∗ݔ
lowing asymptotic behavior near the right boundary of its domain:  

 
ሻݔሺݕ ൌ ∗ݔሺ	ሺܲ௫∗ሻܥ	 	െ 	൫1	ሻିఈݔ	 ൅ ,ሺ1ሻ൯݋	 ݔ → ∗ݔ	 െ 	0, 

 
ሻݔᇱሺݕ ൌ ∗ݔሺ	ሺܲ௫∗ሻܦ	 	െ 	൫1	ሻିఈିଵݔ	 ൅ ,ሺ1ሻ൯݋	 ݔ → ∗ݔ	 	െ 0. 

 

Put ܥ଴ሺݏ, ሻݐ ൌ ሺݏ	1| െ ݇ଵ|ሻ
భ

భషೖభ	|ݐ|
ೖబ

భషೖభ.  

Theorem 1.3 Suppose ݇ଵ ൐ 2. Let ݕሺݔሻ be an increasing solution to equa-
tion (1), let ݔ∗ ൏ ൅∞ be its domain's right boundary. Put ݕ∗ ൌ lim

௫→	௫∗ି଴
 ሻ andݔሺݕ

let ݌ሺݔ, ,ݑ ሻݒ → ݔ as ∗݌	 → ,∗ݔ	 ݑ → ,∗ݕ ݒ → ൅∞. Then 

ሻݔᇱሺݕ ൌ ,∗݌଴ሺܥ	 ∗ݔሺ	ሻ∗ݕ െ ሻݔ
ଵ

௞భିଵ൫1 ൅ ,ሺ1ሻ൯݋ ݔ → ∗ݔ െ 0. 

For the equation 

ᇱᇱᇱݕ ൌ ,ݔሺ݌ ,ݕ ,ᇱݕ ,ሻ′′ݕ	ᇱݕ	ݕሺ	sgn	ᇱᇱ|௞మݕ|ᇱ|௞భݕ|௞బ|ݕ|	ሻ′′ݕ 			݇଴, ݇ଵ, ݇ଶ ൐ 0, (2) 

with the positive continuous and Lipschitz continuous in ݑ, ,ݒ  function ݓ
,ݔሺ݌ ,ݑ ,ݒ -ሻ, the qualitative behavior of solutions with positive initial data deݓ
pending on the values of ݇଴, ݇ଵ, ݇ଶ is studied in [5]. 

Problem 2. Compare the asymptotic behavior of solutions to equation (2) 
for the cases  				݇଴, ݇ଵ, ݇ଶ ൐ 0 and 	݇ଵ ൌ ݇ଶ ൌ 0 (see [8]). 

 
Theorem 1.4 Suppose ݇଴ ൅ ݇ଵ ൅ ݇ଶ ് 1, ݇ଶ ് 1, ݇ଶ ് 2, and the function 

,ݔሺ݌ ,ݑ ,ݒ ,ݑ ሻ is positive, continuous and Lipschitz continuous inݓ ,ݒ  Let .ݓ
 ሻ be a maximally extended solution to equation (2) satisfying the conditionsݔሺݕ
଴ሻݔሺݕ ൒ 0, ଴ሻݔᇱሺݕ ൒ 0, ଴ሻݔᇱᇱሺݕ ൐ 0 at some point ݔ଴. Then 

 
ݕ .1 → ൅∞, ݕᇱ → ൅∞, ݕᇱᇱ → ൅∞ as ݔ → ∗ݔ ൌ 	൅∞ or  

ݕ → ൅∞, ݕᇱ → ൅∞, ݕᇱᇱ → ൅∞ as ݔ → ∗ݔ ൏ ൅∞  if ݇଴ ൅ ݇ଵ ൅ ݇ଶ ൏ 1;  
 

ݕ .2 → ൅∞, ݕᇱ → ൅∞, ݕᇱᇱ → ൅∞ as ݔ → ∗ݔ ൏ ൅∞ 
if  ݇଴ ൅ ݇ଵ ൅ ݇ଶ ൐ 1, ݇ଵ ൑ 1, ݇ଶ ൏ 1; 
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ݕ .3 → ൅∞, ݕᇱ → ൅∞, ݕᇱᇱ → ൅∞ as ݔ → ∗ݔ ൏ ൅∞ or  
ݕ → const, ᇱݕ → 	൅∞, ᇱᇱݕ → ൅∞	as	ݔ → ∗ݔ ൏ ∞ 
if  ݇ଵ ൐ 1, ݇ଶ ൏ 1; 
 

ݕ  .4 → const, ᇱݕ → 	൅∞, ᇱᇱݕ → ൅∞	as	ݔ → ∗ݔ ൏ ∞ if 1 ൏ ݇ଶ ൏ 2; 
 
ݕ .5 → const, ᇱݕ → 	const, ᇱᇱݕ → ൅∞	as	ݔ → ∗ݔ ൏ ∞ if ݇ଶ ൐ 2. 
 

2. Sturm-type theorems for high-order nonlinear differential  equa-
tions (V. Rogachev) [12, 15–17] 

For the equation  

ሺ௡ሻݕ  ൅ ,ݔ൫݌ ,ݕ ,ᇱݕ … , ሻݕሺ	sgn	௞|ݕ|	ሺ௡ିଵሻ൯ݕ ൌ 0		 (3) 

with  n ൒ 3 , k > 0, k≠1, a continuous in ݔ, ,ଵߦ … ,   and Lipshitz continuous in	௡ߦ
,ଵߦ … , ,ݔሺ݌ ௡ functionߦ ,ଵߦ … ,  ௡ሻ satisfying the inequalitiesߦ

					0 ൏ ݉ ൑ pሺݔ, ,ଵߦ … , ௡ሻߦ ൑ ܯ ൏ ∞, 

the qualitative behavior of solutions is studied. Equation (3) can be considered 
as a nonlinear generalization of a linear equation 

ሺ௡ሻݕ  ൅ ݕ	ሻݔሺݍ ൌ 0		 (4) 

with continuous q.   
Theorem (Sturm J. Ch. F. [9]). For n = 2, if there are two consecutive ze-

roes of a solution to (4), then there is exactly one zero of any other linearly-
independent solution between them. 

Theorem (Kondrat’ev V. A. [10, 11]). For n = 3 and q > 0 (or q < 0),  
if there are two consecutive zeros of a solution to (4), then there can be no more 
than 2 zeros of any other solution between them. For n = 4 and q > 0, there is 
no more than 4 zeros. For n = 4 and q < 0, there is no more than 3 zeros. For  
n > 4 and q > 0, it is possible to have a solution with any number of zeros be-
tween two consecutive zeros of another solution. 

Problem 3. To obtain analog of these theorems for nonlinear equations 
with power-law nonlinearities. 

For equation (3), using methods from [12–14], we obtained the follo- 
wing results. 

Theorem 2.1 For any integer s ≥ 2 and any segment [a, b] there is a solu-
tion to (3) defined on [a, b], vanishing at its end-points a, b, and having exactly s 
zeros on [a, b]. 

Theorem 2.2 For k > 1 and any segment [a, b) there is a solution to (3) 
defined on [a, b), vanishing at the point a and having a countable infinite num-
ber of zeros on [a, b). 
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Theorem 2.3 For 0 < k < 1, any positive constant ݌଴ and any seg- 
ment [a, b] there is a defined on [a, b] solution to (3), with ݌ሺݔ, ,ଵߦ … , ௡ሻߦ ≡  ,଴݌
vanishing on its end-points a, b, and having a countable infinite number of zeros 
on [a, b]. Besides, there is a non-trivial solution defined on the segment [a, b], 
vanishing on its end-points a, b, and having an uncountable number  
of zeros on [a, b]. 

Those theorems extrapolate Kondratiev’s results to the case of non-linear 
higher-order (݊ ൒ 3) equations with positive potential p. In the nonlinear case, 
any equation has a solution with any (and not only finite) number of zeros be-
tween two consecutive zeros of another solution, regardless of n.  

For the case of negative p, we can obtain similar results if n is odd  
(see [15–17]). In the case of even n and negative p, the problem is still open, alt-
hough it is proved that for n = 4 and ݌ሺݔ, ,ଵߦ … , ௡ሻߦ ≡ 	଴݌ ൏ 0, equation (3) also 
has a solution with a given finite number of zeros on [a, b] (see [8]). 
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