УДК 620.179.16 ПОВЫШЕНИЕ ЭФФЕКТИВНОСТИ ВЫЯВЛЕНИЯ ДЕФЕКТОВ СЦЕПЛЕНИЯ МАТЕРИАЛОВ

 Н. В. ЛЕВКОВИЧ¹, А. Р. БАЕВ², М. В. АСАДЧАЯ², О. С. СЕРГЕЕВА³
¹Белорусский государственный университет
²Институт прикладной физики НАН Беларуси Минск, Беларусь
³Белорусско-Российский университет Могилев, Беларусь

Работа направлена на повышение эффективности ультразвукового контроля неразъемных соединений, выполненных сваркой, пайкой и другими способами, что достигается выбором условий ввода-приема упругих волн (УВ), рассеянных при пересечении пятном акустического луча границы бездефектной $S_{\mathcal{B}}$ и дефектной S_D поверхностей. При этом углы ввода и приема УВ выбирают таким образом, чтобы обеспечить максимальный фазовый сдвиг ф между рассеянными дефектной S_D и бездефектной $S_{\mathcal{B}}$ поверхности волнами. На первом этапе исследований в рамках классических представлений проведен расчет полей рассеяния УВ при перемещении пятна акустического луча через границу полубесконечного дефекта (рис.1) и при наличии фазового сдвига между рассеянными волнами, варьируемого в диапазоне $|\phi| = \pi/4 - \pi$.

Рис. 1. К расчету поля рассеяния от граничной поверхности сцепления материалов с дефектом в виде круглого пятна и бесконечной полуплоскости

Согласно данной постановке задачи, результирующее поле рассеяния УВ представлено в виде суперпозиции полей трех мнимых источников, каждое из которых описывается интегральным выражением

$$A = A_0 + A_{D1} + A_{D2} = A_{00}[S_0K_{R0}F_0(\psi, \phi, ...) + A_{00}S_{D1}K_DF_0(\psi, \phi, \phi, ...) - A_{00}S_DK_DF_{01}(\psi, \phi, ...)],$$

где A_{00} – амплитуда падающего на границу сред акустического пучка (АП), A_0 – поле рассеяния в дальней зоне при падении луча УЗК на поверхность $S \subset S_0$, A_{D1} и A_{D2} – поля рассеяния УЗК от дефектной поверхности S_D , F_0 , F_{01} , F_D – нормализованные интегральные функции, $F_{01} \equiv F_0$ для области интегрирования $S \subset S_D$.

Приведенные на рис. 2 и 3 данные по эволюции полей рассеяния убедительно свидетельствуют о новых возможностях повышения чувствительности измерений. Это достигается за счет выбора именно пары угловых параметров ϕ^* и ψ^* , при которых изменение относительной амплитуды рассеянного сигнала $\Delta A^* = (A - A_0)/A_0$ при перемещении пятна лазерного луча может достигать десятков децибел, где A_0 – опорный сигнал, лежащий в окрестности экстремумов первого порядка, что следует из данных на рис. 2 и 3. Интересно, что зависимости $\Delta A^*(\psi)$ при заданных ϕ^* представляют осцилляционные кривые, период которых при $\phi = \pm \pi$ не зависит от величины фазового сдвига. Однако, если $\phi \neq \pm \pi$, а в качестве опорного сигнала использовать первый боковой максимум диаграммы направленности (ДН), то характер осцилляции функции $\Delta A^*(\psi)$ и ее период изменятся.

Рис. 2. Изменение поля рассеяния УВ в плоскости сечения ДН, характеризуемой экваториальным углом ψ , от положения границы полубесконечного дефекта $x_0 = d$ при фазовом сдвиге $\phi = \pi$: $\psi = 0$ (*a*), 90 (*б*); $x_d = x_0/d = 1$ (1), 0,4 (2), 0 (3)

Рис. 3. Амплитуда минимума (*a*) и максимума (*б*) первого порядка поля рассеяния УВ от положения границы полубесконечного дефекта относительно центра пятна акустического луча: фазовый сдвиг ϕ , рад = π (1 –3); $\theta = \pi/4$ (4–6); $x_a = x/a = 0$ (1, 3); 0,6 (2, 4); 0,8 (3, 6); $\delta - \phi = \pi$ (1 –3); $\theta = \pi/4$ (1, 4, 5); $x_a = x/a = 1$ (1); 0,5 (2, 4); 0 (3, 5)

Результаты экспериментальных исследований, выполненных применительно к рассеянию поверхностных волн от дискретной границы сцепления стали с образцом дюралюминия длиной 35 мм и при $\phi \approx \pi/2$, показали, что величина ΔA^* может достигать до 35...40 дБ, а это согласуется с расчетами.

Необходимо отметить перспективность использования предлагаемого метода для контроля качества сцепления полимерных и порошковых покрытий на стальных объектах, паяных баббитовых покрытий на латунном, чугунном основании подшипников скольжения, а также обнаружения подповерхностных дефектов в объектах с грубо обработанной поверхностью и высоким затуханием звука (например, в чугунах).