УДК 621.791.763. РАЗРАБОТКА УРАВНЕНИЯ ТЕПЛОВОГО БАЛАНСА ДЛЯ РАСЧЕТА ТРЕБУЕМОЙ ВЕЛИЧИНЫ СВАРОЧНОГО ТОКА ПРИ КОНТАКТНОЙ РЕЛЬЕФНОЙ СВАРКЕ

Л. В. ЯКОВЕНКО

Научный руководитель А. Ю. ПОЛЯКОВ, канд. техн. наук, доц. ГУ ВПО «Белорусско-Российский университет»

В Беларуси и за ее пределами на предприятиях, имеющих в своем составе участки контактной сварки, при получении нахлесточных рельефных сварных соединений металла толщиной от 1,5+1,5 до 5+5 мм технологи сталкиваются с проблемой определения основных параметров режима, настраиваемых на регуляторе цикла сварки. Этими параметрами являются величина сварочного тока $I_{\rm CB}$ и длительность его протекания $\tau_{\rm CB}$.

Проблема в том, что в литературе по сварке давлением в разделах «Технология контактной рельефной сварки» указывается на возможность использования уравнения теплового баланса (УТБ), применяемого к контактной точечной сварке (КТС) для расчета требуемой величины I_{CB} при контактной рельефной сварке (КРС). При этом не поясняется, каким образом необходимо проводить аналогию расчетов теплосодержания объемов основного металла и материала электродов, доводимых при сварке до определенных температур при полезном нагреве и теплоотводе. Исследователи КТС акцентируют внимание на значительное ее сходство с КРС и не принимают во внимание тот факт, что геометрия формируемых литых зон (как конечного результата сварки) в обоих случаях различается. Если при КТС в поперечном сечении макрошлифа сварная точка имеет форму, близкую к прямоугольной (что соответствует представлениям о цилиндрической форме зоны взаимного расплавления металла деталей), то при КРС – нет. Форма рельефной сварной точки напоминает собой не цилиндр, а объемный эллипсоид. УТБ, применимое для КТС, не позволяет учитывать вышеуказанную особенность КРС и требует переработки.

Проанализировали геометрию макрошлифов рельефных сварных соединений. Разбили их на равные части и определили достаточное количество точек приближенных кривых, описывающих каждую из частей. Совмещение и аппроксимация кривых позволили вывести функцию, описывающую одну часть. Вращением функции вокруг соответствующей координатной оси получили половину объема рельефной сварной точки. Так появилась возможность существенно видоизменить формулы УТБ и более точно учесть зоны полезного нагрева и теплоотвода с точки зрения теплосодержания металла свариваемых деталей и электродов при КРС.

