УДК 691.32

РАЗРАБОТКА ЭНЕРГОСБЕРЕГАЮЩИХ РЕЖИМОВ ТВЕРДЕНИЯ БЕТОНА С ДОБАВКОЙ «УКД-1»

О. Ю. МАРКО, Е. Е. КОРБУТ Белорусско-Российский университет Могилев, Беларусь

Рост прочности бетона в нормально-влажностных условиях.

При исследовании кинетики твердения бетона первоначально определили дозировку комплексной химической добавки «УКД-1», обладающей ускоряюще-пластифицирующим действием, по методике ГОСТ 30459–96 на следующем составе бетона: цемента — 350 кг; щебня — 100 кг; песка — 750 кг; воды — 175 кг (ОК \sim (3...4) см), при твердении образцов-кубов с ребром 100 мм в нормально-влажностных условиях (W \geq 90 %; t \sim 20 °C). Для сравнения оценивали рост прочности бетона без добавок, с добавкой, ускоряющей твердение бетона, — сульфатом натрия (Na₂SO₄) и с комплексной добавкой «УКД-1», содержащей углеродный наноматериал. С целью изучения непосредственного влияния вещества добавки «УКД-1» на кинетику твердения бетона водоцементное отношение при использовании комплексной добавки было снижено до уровня, обеспечивающего равную подвижность бетонных смесей.

Разработку энергосберегающих режимов твердения бетона проводили для температурного диапазона окружающей среды 5...30 °C. В ходе экспериментов образцы-кубы бетона твердели в опалубках различных типов (табл. 1), с различными коэффициентами теплопередачи ($K_{\rm T}$ от 0,6 до 3,5 $Bt/(M^2\cdot$ °C)).

Табл.	1. Xa	ракте	ристики	опалубок
1		P	P	011001, 0010

Материал форм-опалубок	Коэффициент теплопередачи стенок опалубок, Bт/(м².°C)
1 Доска (25 мм)	2,44
2 Сталь (10 мм)	3,50
3 Металл (10 мм) + минераловатная плита (60 мм)	~ 1,00
4 Фанера (12 мм)	~ 2,98
5 Фанера (12 мм) + минераловатная плита (60 мм)	~ 0,60

При проведении экспериментов использовали бетонные смеси составов, приведенных в табл. 2. Известно, что добавка сульфата натрия может обеспечить реализацию весьма эффективных по затратам энергии технологий изготовления сборных изделий [1], поэтому сопоставление результатов

экспериментов (при прочих равных условиях) позволит выявить уровень эффективности комплексной добавки «УКД-1».

Номер пози-	Класс бетона	Марка	Наличие добавки	Расход составляющих, кг, на 1 м ³ бетона				В/Ц	
ции	ОК, см	цемента	дооавки	Ц	П	Щ	В		
1	G127	M400	_	380	685	1100	201	0,53	
2	$C^{12}/_{15}$ 1214		1 % Na ₂ SO ₄	360	720	1100	182	0,50	
3			1 % «УКД-1»	340	715	1150	163	0,48	

Табл. 2. Составы бетона для исследований

На рис. 1 отражены результаты экспериментов в виде зависимости роста прочности бетона на сжатие с различным содержанием добавки «УКД-1» и с 1 % Na₂SO₄ от массы цемента — это средние значения относительной прочности (выраженной в процентах от проектной прочности бетона без добавок) в серии из не менее трех образцов, коэффициент вариации не превышал 7...8 %.

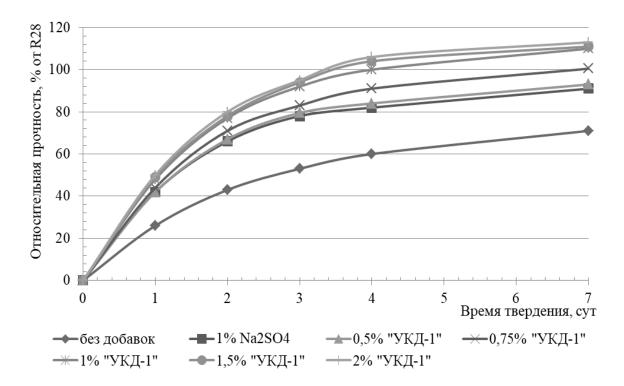


Рис. 1. Рост прочности бетона при твердении в нормально-влажностных условиях

По результатам экспериментов можно сделать следующие выводы: прочность бетона с комплексной добавкой «УКД-1» (за счет совместного эффекта от снижения водоцементного отношения и действия компонентов сульфата натрия и углеродного наноматериала [2]) в возрасте 7 сут соста-

вила от 100 % (при 0,75 % «УКД-1») до 113 % (при 2,0 % «УКД-1») от проектной прочности образцов бетона из равноподвижных смесей без добавок.

Рост прочности бетона в условиях «термоса».

Цель настоящих исследований — установить зависимость роста прочности бетона на сжатие с комплексной пластифицирующе-ускоряющей добавкой «УКД-1» от его саморазогрева за счет накопления энергии, выделяющейся при экзотермии цемента. Известно, что минералы портландцементного клинкера в процессе реакции гидролиза-гидратации выделяют значительное количество теплоты. Ее накопление за счет гидро- и теплоизоляции твердеющего бетона способствует росту его температуры и, как следствие, ускорению реакций цемента с водой затворения, что приводит к нарастанию тепловыделения бетона в первые-третьи сутки твердения. Этот эффект увеличивается при введении добавок, ускоряющих твердение бетона. Следовательно, основой эффективной беспрогревной технологии монолитного бетона является использование экзотермии цемента при условии твердения бетона по методу «термоса».

В процессе исследований установили кинетику прочности бетона с содержанием 1 % от массы цемента комплексной добавки «УКД-1», также зафиксировали изменение температуры бетона в процессе твердения в условиях гидро- и теплоизоляции (формы были установлены в ящик из пенополистерола на период твердения, их поверхность была герметизирована пленкой). В центр одного из образцов устанавливали датчик-термопару для контроля за изменениями температуры. Начальная температура бетона была принята ~6, ~13 и ~20 °С. Для сравнения были использованы составы бетона класса C12/15 (ОК ~ 12...14 см) № 1 (без добавки) и № 3 (с содержанием 1 % «УКД-1»). Проводя периодический контроль изменения температуры и определяя прочность бетона, получили результаты, приведенные в табл. 3.

Увеличение скорости гидратации цемента 1-й и 2-й групп эффективности с добавкой «УКД-1» повышает его тепловыделение, а накопление тепла обеспечивает саморазогрев (увеличение начальной температуры бетонной смеси) и, как следствие, увеличение прочности бетона до 65 % (от проектной прочности бетона без добавок) к третьим суткам твердения при начальной температуре бетонной смеси \sim 6 °C и до 98 % (фактически проектной прочности) к третьим суткам твердения при начальной температуре смеси \sim 20 °C.

Применение вяжущего 3-й группы эффективности сопровождается низким тепловыделением и, соответственно, незначительным разогревом бетона и темпом роста его прочности, следовательно, использование цементов 3-й группы эффективности противоречит цели разработки и не целесообразно для беспрогревной технологии.

Табл. 3. Изменение температуры и рост прочности бетона при твердении в условиях «термоса»

Номер состава бетонной	остава эффективности		Температура бетона, °С, к исходу суток				Относит. прочность бетона (в % от проектной) через сутки		
смеси	смеси цемента М400	Нач.*	1	2	3	1	2	3	
	Состав без добавок								
1	1-я	20	25	30	33	37	58	64	
1	2-я	20	23	28	30	35	55	62	
1	3-я	20	23	25	28	29	51	56	
	Состав с добавкой «УКД-1»								
3	1-я	6	9	17	24	32	50	65	
3	1-я	13	18	28	33	41	58	74	
3	1-я	20	28	37	42	54	79	96	
3	2-я	6	8	14	21	27	46	63	
3	2-я	13	15	25	29	36	51	70	
3	2-я	20	25	33	38	51	74	89	
3	3-я	6	8	12	16	21	44	53	
3	3-я	13	15	22	24	32	52	62	
3	3-я	20	21	28	31	35	56	72	
Прим	Примечание – * – начальная температура свежеотформованного бетона								

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1. **Батяновский, Э. И.** Технологические особенности производства ЖБК с применением ускорителей твердения бетона / Э. И. Батяновский, Р. Ф. Осос // Проблемы технологии производства строительных материалов, изделий и конструкций, строительство зданий и сооружений: сб. ст. Брест: БПИ, 1998. Вып. 1. С. 22–25.
- 2. **Батяновский, Э. И.** Влияние углеродных наноматериалов на свойства цемента / Э. И. Батяновский, П. В. Рябчиков, В. Д. Якимович // Материалы XVI Междунар. научно-методического семинара. Брест: БрГТУ, 2009. Ч. 2. С. 136.