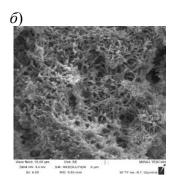

УДК 691.5


ИССЛЕДОВАНИЕ МИКРОСТРУКТУРЫ КОМПОЗИЦИОННОГО ВЯЖУЩЕГО

Н. И. БОНДАРЕНКО, Н. В. ШАКУРОВА

Научный руководитель В. А. ДОРОГАНОВ, канд. техн. наук, доц. Белгородский государственный технологический университет им. В. Г. Шухова Белгород, Россия

Выбор минеральных добавок, которые в цементных бетонах используются как микронаполнители, является очень важной проблемой [1]. Применение стеклопорошка различной дисперсности при затворении водой показало отсутствие вяжущих свойств, для гидратации следует использовать активатор в виде соединения щелочного металла. Гидратация стеклопорошка в щелочной среде проходит с образованием кремниевых кислот, затем с достижением определенных показателей кислотности они превращаются в гель, который при уплотнении способствует омоноличиванию частиц разных размеров и, как следствие, создается долговечный и плотный конгломерат. Для исследования микроструктуры были подготовлены экспериментальные образцы (рис. 1).

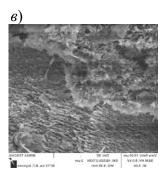


Рис. 1. Микроструктура композиционного вяжущего: a – цемент + стеклопорошок без активатора; δ – цемент + стеклопорошок с активатором; δ – стеклопорошок + активатор

Заметна неоднородная структура композиционного вяжущего (рис. 1, a, в), во втором случае это связано с тем, что часть материала не прореагировала с активатором, формирование гидросиликатов кальция игольчатой структуры видно на рис. $1, \delta$.

Работа выполнена при поддержке программы развития опорного университета на базе БГТУ им. В. Г. Шухова.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. Модифицирование бетона за счет введения различных видов добавок / Л. Н. Боцман [и др.] // Вестн. БГТУ им. В. Г. Шухова. -2016. -№ 6. - C. 90–94.