УДК 625. 7 ОЦЕНКА ВЛИЯНИЯ НА СВОЙСТВА ЦЕМЕНТНОГО БЕТОНА КОМПЛЕКСНЫХ ДОБАВОК ПРИ РАЗЛИЧНЫХ УСЛОВИЯХ ТВЕРДЕНИЯ

А. И. КАКАШИНСКИЙ, А. В. ГВОЗДЬ, Д. С. КОРБУТ, Я. Ю. ГУТНИК Научный руководитель Е. Е. КОРБУТ, канд. техн. наук, доц. БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ

На сегодняшний день из существующих технологий возведения зданий и сооружений наиболее перспективным является монолитное строительство. В условиях Беларуси мы встречаемся с рядом трудностей, затормаживающих процесс повсеместного внедрения прогрессивных технологий. Особые сложности возникают при бетонировании в зимних условиях. Главная проблема состоит в замерзании несвязанной воды затворения в начальный период структурообразования бетона, поскольку при прекращении реакции гидратации — бетон не твердеет.

В связи с тем, что темп твердения бетона обуславливается физико-химическими процессами взаимодействия минералов портландцементного клинкера с водой, анализировался вопрос ускорения твердения бетона путем введения различных химических добавок. Проводились исследования влияния добавки-ускорителя твердения сульфата натрия и комплексной добавки, состоящей из сульфата натрия и суперпластификатора С-3, на кинетику роста прочности бетона и прочностные характеристики затвердевшего бетона.

Данные экспериментальных исследований кинетики твердения бетона по росту его прочности на сжатие, выраженной в процентах от проектной (в возрасте 28 суток), представлены в табл. 1.

Наличие и вид добавки	Прочность бетона в % от R_{28} в возрасте, сут.					
	1	2	3	6	7	28
-	2	15	18	42	49	100
Na_2SO_4	4	16	42	58	62	108
Na ₂ SO ₄ +C-3	0.5	9	51	89	97	131

Табл. 1. Кинетика роста прочности бетона

Оценивая эффективность применения модифицированного бетона для обеспечения беспрогревной технологии монолитного бетонирования, приходим к выводу, что бетон с добавками Na_2SO_4 и $C-3+Na_2SO_4$ обеспечивает прочность в 60–70 % от проектной за 72 ч твердения; прочность около 90 % от проектной за 7 суток твердения, в то время как бетон без добавок набирает указанную прочность только на 14 сутки твердения.