УДК 621.837.7

А. Г. Семин, канд. техн. наук, доц., А. М. Тимофеев, канд. техн. наук, проф., А. В. Локтионов, д-р техн. наук, проф.

ИССЛЕДОВАНИЕ МЕХАНИЗМА ПРЕРЫВИСТОГО ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ С ВНЕШНИМ ЗАЦЕПЛЕНИЕМ ЗУБЧАТЫХ КОЛЕС

В статье изложены результаты кинематического исследования зубчато-рычажного механизма прерывистого вращательного движения с внешним зацеплением колес. Установлено, что кулиса имеет остановку, равную 23 % времени цикла, соответствующего половине оборота водила. Получены расчетные зависимости для определения угловой скорости и ускорения выходного звена механизма.

Введение

Исполнительные органы некоторых машин совершают движения с остановками, длительность которых зависит от требований технологического процесса. Например, подача ткани на швейной машине зигзагообразной строчки производится при помощи кулачково-рычажного механизма. Наличие высших кинематических пар и появление ударов не позволяют использовать указанный механизм при высоких скоростях.

Схема зубчато-рычажного механизма

Лучшие динамические характеристики имеет зубчато-рычажный механизм с

внутренним зацеплением зубчатых колес, результаты исследований которого представлены в [1-3]. Рассмотрим возможность применения в указанных условиях зубчато-рычажного механизма с внешним зацеплением колес, схема которого представлена на рис. 1. Механизм состоит из неподвижного зубчатого колеса 1, водила 2 и сателлита 3, который имеет палец 4 с установленным на нем камнем 5, образующим поступательную пару с кулисой 6, имеющей общую ось вращения с водилом. При вращении водила движение пальца через камень передается кулисе 6, совершающей приближенно-прерывистое вращательное движение.

Рис. 1. Схема зубчато-рычажного механизма

Машиностроение. Металлургия

Расчет кинематических параметров механизма

Координаты точки *В* пальца определяются из выражений

$$x = L \cdot \cos \alpha - l \cos \beta;$$

$$y = L \sin \alpha - l \sin \beta,$$
 (1)

где L = OA (см. рис. 1); l = AB; α – угол поворота водила 2; β – угол поворота сателлита 3.

Углы α и β связаны между собой зависимостью [4]

$$\beta = \left(\frac{R}{r} + l\right)\alpha, \qquad (2)$$

где *R* и *r* – радиусы делительных окружностей центрального колеса и сателлита.

Обозначим $l = k \cdot r$, где k – коэффициент.

Тогда

$$x = (R+r)\cos\alpha - kr\cos\left(\frac{R}{r} + l\right)\alpha;$$
$$y = (R+r)\sin\alpha - kr\sin\left(\frac{R}{r} + l\right)\alpha.$$

Так как угловые характеристики механизма φ , ω и ε не зависят от абсолютных размеров механизма, то, принимая r = l и учитывая, что $\frac{R}{r} = U$, получим

$$x = (U+l)\cos\alpha - k\cos(U+l)\alpha;$$

$$y = (U+l)\sin\alpha - k\sin(U+l)\alpha.$$
(3)

Угловое перемещение кулисы

$$\varphi = \operatorname{arctg} \frac{y}{x}.$$
 (4)

При исследовании механизма приняты U = 1...5 и k = 1...1,5. На рис. 2 представлено изменение углового перемещения кулисы для случая, когда U = 2и k = 1,2. На рис. 2 угол α_o обозначает угол поворота кулисы за время приближенной остановки, в течение которого кулиса имеет некоторое перемещение φ_o . Величина этого перемещения характеризует стабильность остановки кулисы и составляет 2,3⁰ при $\alpha = 41,4^0$. Это означает, что кулиса имеет остановку, равную 23 % времени цикла, соответствующего половине оборота водила.

На рис. З представлено изменение длительности α_o и стабильности φ_o остановки кулисы в зависимости от величины k.

Рис. 2. Изменение углового перемещения кулисы φ от угла поворота водила α

Машиностроение. Металлургия

Рис. 3. Изменение длительности *a*₀ и стабильности *φ*₀ остановки кулисы

(5)

(7)

Как показали исследования, кривые изменения φ_o и α_o в зависимости от коэффициента *k* имеют вид парабол. Уравнение кривой изменения φ_o имеет вид:

$$\varphi_o = a(k-1)^n \, .$$

Подставляя в уравнение (5) по два любых значения φ_o и k, получим два уравнения с двумя неизвестными, из которых определим a и n. Тогда

$$\varphi_o = 23,5(k-1)^{1,4}.$$
 (6)

Длительность остановки кулисы *а*_о определяется по формуле

отсюда

$$k = \frac{\alpha_0^2}{8100} + 1. \tag{8}$$

Длительность и стабильность остановки при различных значениях k можно оценить аналитически. На рис. 4 представлена траектория движения точки В пальца во время остановки кулисы, к которой проведена касательная из начала координат, совпадающего с осью вращения кулисы. Скорость точки В пальца направлена по касательной, расположенной под углом φ_o к горизонтальной оси x. Угловое перемещение кулисы

$$\varphi_o = arctg \frac{y}{x} = arctg \frac{\dot{y}}{\dot{x}}$$
 (9)

$$\frac{y}{x} = \frac{\dot{y}}{\dot{x}}.$$
 (10)

where

Учитывая, что $\alpha = \omega t$ и дифференцируя уравнения (3), получим

$$\dot{x} = -\omega(U+1)\sin\alpha + k\omega \times$$

$$\times (U+1)\sin[(U+1)\alpha];$$

$$\dot{y} = \omega(U+1)\cos\alpha - k\omega \times$$

$$\times (U+1)\cos[(U+1)\alpha].$$
(11)

Из (10) с учетом (3) и (11) имеем

$$\alpha = \frac{1}{U} \arccos \frac{U+1+k^2}{k(U+2)}.$$
 (12)

В качестве примера проведем оценку длительности и стабильности остановки кулисы при U = 2 и k = 1,2. Из уравнений (12) и (9) получим $\alpha = 11,1^0$ и $\varphi_o = 2,4^0$. На рис. 2 представлен график углового перемещения кулисы, из которого видно, что при движении кулисы из начального положения (при $\varphi = 0$) $\alpha = \alpha_0 / 2$. Для рассматриваемого случая (U = 2)

$$y = 3\sin\alpha - k\sin 3\alpha = 0.$$

Машиностроение. Металлургия

Рис. 4. Траектория движения точки В пальца во время остановки кулисы

Учитывая, что sin $3\alpha = 3\sin \alpha - 4\sin^3 \alpha$, получим

$$3\sin\alpha - k(3\sin\alpha - 4\sin^3\alpha) = 0, \quad (13)$$

отсюда

$$\alpha = \arcsin 0,867 \sqrt{\frac{k-1}{k}}.$$
 (14)

Из уравнения (14) при k = 1,2 имеем $\alpha = 20,7^{0}$. Тогда $\alpha_{o} = 41,4^{0}$, что соответствует ранее найденному значению α_{o} .

При кинематическом анализе механизма определяются угловая скорость и угловое ускорение кулисы. Скорость точки *B'* кулисы, совпадающей с точкой В пальца (см. рис. 1), определяется по формуле

$$\overline{V}_{B'} = \overline{V}_{B'X} + \overline{V}_{B'Y}.$$
 (15)

Проецируя последнее уравнение на линию, перпендикулярную кулисе, получим

$$V_{B'} = -\dot{x} \cdot \sin \varphi + \dot{y} \cos \varphi. \qquad (16)$$

Учитывая, что

$$\sin \varphi = \frac{y}{\sqrt{x^2 + y^2}}; \ \cos \varphi = \frac{x}{\sqrt{x^2 + y^2}}, \ (17)$$

имеем

$$V_{B'} = \frac{\dot{y}x + \dot{x}y}{\sqrt{x^2 + y^2}} \,. \tag{18}$$

Разделив обе части зависимости (18) на величину расстояния $OB' = \sqrt{x^2 + y^2}$, получим выражение для определения угловой скорости кулисы

$$\omega_k = \frac{\dot{y}x - \dot{x}y}{x^2 + y^2}.$$
 (19)

Schlete

На рис. 5 представлено изменение аналога угловой скорости кулисы в зависимости от угла поворота водила. Максимальное значение угловой скорости кулисы имеет место при $\alpha = 90^{\circ}$ и составляет 1,75 ω .

Дифференцируя уравнение (11), получим

$$\ddot{x} = -\omega^{2}(U+1)\cos\alpha + k\omega^{2} \times (U+1)\cos[(U+1)\alpha];$$

$$\ddot{y} = \omega_{2}(U+1)\sin\alpha + k\omega^{2} \times (U+1)\sin[(U+1)\alpha].$$
 (20)

Ускорение точки В´ кулисы, совпадающей с пальцем, определяется из системы векторных уравнений

$$\overline{a}_{B'} = \overline{a}_B + \overline{a}_{B'B}^k + \vec{a}_{B'B}^{\tau};$$

$$\overline{a}_{B'} = \overline{a}_o + \overline{a}_{B'O}^n + \vec{a}_{B'O}^{\tau}, \qquad (21)$$

ИЛИ

129

$$\overline{a}_{B'O}^n + \overline{a}_{B'O}^\tau = \overline{a}_B + \overline{a}_{B'B}^k + \overline{a}_{B'B}^\tau.$$

Машиностроение. Металлургия

Рис. 5. Изменение аналогов угловой скорости $\frac{\omega_k}{\omega}$ и углового ускорения $\frac{\varepsilon_k}{\omega^2}$ кулисы от угла поворота водила α

Проецируя последнее уравнение на ось, перпендикулярную кулисе, получим

$$a_{BO}^{\tau} = \ddot{x} \cdot \sin \varphi - \ddot{y} \cos \varphi + a_{BB}^{k}. \quad (22)$$

Ускорение Кориолиса определяется по формуле

$$u_{B'B}^{k} = 2V_{B'B} \cdot \omega_{k} , \qquad (23)$$

где $V_{B'B}$ – скорость кулисы относительно пальца.

Проецируя уравнение (15) на ось, совпадающую с линией кулисы, получим

$$V_{B'B} = -\dot{x}\cos\varphi - \dot{y}\sin\varphi$$

или с учетом (17)

$$V_{B'B} = -\frac{\dot{x}x + \dot{y}y}{\sqrt{x^2 + y^2}}.$$
 (24)

Следовательно, выражение для определения ускорения Кориолиса принимает вид:

$$a_{B'B}^{k} = -2 \frac{(\dot{x}x + \dot{y}y)(\dot{y}x - \dot{x}y)}{(x^{2} + y^{2})^{3/2}}.$$
 (25)

Из (22) с учетом (17) и (25) имеем

$$a_{B'O}^{\tau} = \frac{\ddot{x}y - \ddot{y}x}{\sqrt{x^2 + y^2}} - 2\frac{(\dot{x}x + \dot{y}y)(\dot{y}x - \dot{x}y)}{(x^2 + y^2)^{3/2}}.(26)$$

Разделив обе части зависимости (26) на величину расстояния $OB' = \sqrt{x^2 + y^2}$, получим выражение для определения углового ускорения кулисы

rere

$$\varepsilon_{k} = \frac{(\ddot{x}y - \ddot{y}x)(x^{2} + y^{2}) - 2(\dot{x}x + \dot{y}y)(\dot{y}x - \dot{x}y)}{(x^{2} + y^{2})^{2}} \cdot (27)$$

Изменение аналога углового ускорения кулисы в зависимости от угла поворота водила представлено на рис. 5. Максимальное значение ускорения кулисы имеет место при $\alpha = 24^{0}$ и составляет $5\omega^{2}$.

Выводы

Предложенные аналитические зависимости применимы при расчете и проектировании аналогичных механизмов. Задаваясь углом α_o , который выбирается из циклограммы работы машины, по формуле (8) определяем значение k. Из уравнения (6) находим угол φ_o отклонения кулисы за время остановки и оцениваем φ_o с точки зрения технологического процесса. Полученные кинематические параметры являются исходными данными для силового анализа механизма и расчета его звеньев на прочность.

СПИСОК ЛИТЕРАТУРЫ

1. Семин, А. Г. Исследование механизма с прерывистым движением выходного звена / А. Г. Семин, А. М. Тимофеев, А. В. Локтионов // Вестн. Гомельского гос. техн. ун-та им. П. О. Су-хого. – 2002. – № 3–4. – С. 12–16.

2. Семин, А. Г. Исследование длительности и качества квазиостановки выходного звена зубчато-рычажного механизма / А. Г. Семин, Б. Ф. Алещенко // Вестн. ВГТУ. – 2006. – № 10. – С. 41–44.

3. Семин, А. Г. Кинематическое исследование зубчато-рычажного механизма с прерывистым движением выходного звена / А. Г. Семин, Ф. А. Ким, Д. Н. Свирский // Вестн. Полоцкого гос. ун-та. – 2005. – № 4. – С. 150–152.

4. **Фролов, К. В.** Теория механизмов и машин : учебник для студентов вузов / К. В. Фролов, С. А. Попов, А. К. Мусатов ; под ред. К. В. Фролова. – М. : Высш. шк., 1987. – 496 с.

Витебский государственный технологический университет Материал поступил 21.04.2008

A. G. Syomin, A. M. Timofeev, A. V. Loktionov Investigation of faltering rotary movement mechanism with external gearing wheels

This paper describes the results of the kinematic investigation of the tooth-lever mechanism of faltering rotary movement with external gearing wheels. It is stated that the outlet link has a stop, that amounts 23 % of the time of a cycle corresponding to a half of the turn of the leading link. Calculated dependences for estimation of angular velocity and acceleration of the mechanism outlet link have been made.