УДК 625.72:528.48

О ТОЧНОСТИ ОПРЕДЕЛЕНИЯ ДЕЙСТВИТЕЛЬНЫХ РАДИУСОВ ЗАКРУГЛЕНИЙ АВТОМОБИЛЬНЫХ ДОРОГ

Д. Н. ДРОЗДОВ, И. М. ДОРМАКОВСКИЙ

Научные руководители: Ю. А. КАТЬКАЛО, доц.; Н. В. ТУЛУЕВСКИЙ Государственное учреждение высшего профессионального образования «БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ»

Могилев, Беларусь

При операционном контроле качества работ и приемочном контроле на автомобильных дорогах определяют действительные радиусы кривых в плане. Электронным тахеометром измеряют прямоугольных координаты X_{i}, Y_{i} точек на круговой кривой.

Уравнение круговой кривой автомобильной дороги

$$X_i^2 + (Y_i - R)^2 = R^2$$
.

Отсюда радиус круговой кривой

$$R = (X_i^2 + Y_i^2) / 2Y_i.$$

Средняя квадратическая ошибка определения радиуса

$$m_R = \sqrt{\left(\frac{\partial R}{\partial X_i}\right)^2 m_X^2 + \left(\frac{\partial R}{\partial Y_i}\right)^2 m_Y^2} = \sqrt{\frac{X_i^2}{Y_i^2} m_X^2 + \frac{1}{4} \left(1 - \frac{X_i^2}{Y_i^2}\right)^2 m_Y^2}$$

 m_{X} , m_{Y} – средние квадратические ошибки измерения прямоугольных координат точек.

Прямоугольные координаты i-й точки круговой кривой:

$$X_i = X_S + l_i \cos \alpha_i$$
. $Y_i = Y_S + l_i \sin \alpha_i$,

где X_S , Y_S — координаты станции S электронного тахеометра, величины постоянные; l_i – расстояние от станции S до i-й точки на кривой; α_i – дирекционный угол направления S-i.

$$\alpha_{i} = \alpha_{S-HK} + \beta_{i}$$
,

где α_{S-HK} — дирекционный угол опорного направления, величина постоянная, поэтому $m_{\alpha_i} = m_{\beta_i}$; β_i – угол, измеряемый между опорным направлением и направлением на *i*-ю точку круговой кривой.

Основными при определении координат X_{i} , V_{i} являются ошибки: m_{β} , измерения угла β_i и m_l , измерения расстояния l_i . Тогда средние квадратические ошибки прямоугольных координат точек:

$$m_X = \sqrt{m_l^2 \cos^2 \alpha_i + \frac{m_\beta^2}{\rho^2} l_i^2 \sin^2 \alpha_i}, \qquad m_V = \sqrt{m_l^2 \sin^2 \alpha_i + \frac{m_\beta^2}{\rho^2} l_i^2 \cos^2 \alpha_i}.$$

