УДК 528.3

ПРИМЕНЕНИЕ ПОЛИНОМИАЛЬНОЙ АППРОКСИМАЦИИ В СОЧЕТАНИИ С ФУРЬЕ-АППРОКСИМАЦИЕЙ ДЛЯ ОПИСАНИЯ ПРОЦЕССА ОСЕДАНИЯ ГИДРОТЕХНИЧЕСКИХ СООРУЖЕНИЙ

А. В. МЕЛЬНИК, Ю. А. МЕЛЬНИК «ВОСТОЧНОЕВРОПЕЙСКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ им. Леси Украинки» «ЛУЦКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» Луцк, Украина

Для более точной аппроксимации процесса оседания вдоль гребня бетонного парапета плотины целесообразно выделить трендовую составляющую процесса осадки в виде полиномиальной функции $h(x) = \sum_{i=0}^{n} C_i X^i$ и аппроксимации остаточных отклонений от кривой тренда частичным рядом Фурье по дискретным значениям высотных отметок контрольных марок.

В процессе математической обработки исходных данных по трендовой составляющей взято полином пятой степени:

$$h_5(x) = 1,163 - 42,199x + 22,304x^2 - 5,389x^3 + 0,607x^4 - 0,024x^5$$
 (1)

Графическое представление процесса оседания и характер трендовой кривой показаны на рис. 1.

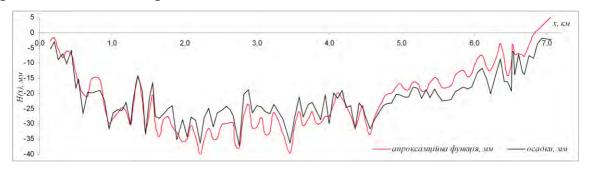


Рис. 1. Графическая аппроксимация линейной комбинацией полинома 5-й степени и конечного ряда Фурье

Представим отклонения результатов наблюдения значений, которые получили трендовой кривой в виде конечного ряда Фурье. В результате для любой точки гребня бетонного парапета плотины водохранилища предложена аппроксимирующая функция в виде:

$$H(x) = h_5(x) + a_0 + \sum_{k=1}^{40} [a_k \cos(kx) + b_k \sin(kx)].$$
 (2)

Несовпадение по модулю результатов нивелирования со значениями прогнозной модели (2) составляет: min = 0.01 мм, а max = 8.05 мм. Размах несовпадений составляет 15,91 мм, а CKO - 3.46 мм.

