УДК 621.791.72

ВЛИЯНИЕ РЕЖИМОВ ЛАЗЕРНОЙ НАПЛАВКИ НА МИКРОТВЕРДОСТЬ ПОКРЫТИЯ ИЗ СПЛАВА НА ОСНОВЕ НИКЕЛЯ

М. А. КАРДАПОЛОВА, Н. И. ЛУЦКО, А. С. ВОЛОДЬКО «БЕЛОРУССКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» Минск, Беларусь

Лазерная наплавка — это технология создания покрытий, включающая нанесение материалов разной природы на металлическую подложку с использованием в качестве источника энергии лазерного луча. Особенностью лазерной наплавки является достижение высоких (до 10^7 Вт/м²) плотностей мощности, что обеспечивает возможность локального нанесения покрытия без объемного разогрева детали.

Перспективным направлением развития лазерной наплавки является объединение последней с компьютерным проектированием (CAD) и компьютерным управлением (CAM), когда появляется возможность производить послойное изготовление деталей завершенной геометрии в течение одноступенчатого процесса с минимальной последующей механической обработкой и получением комплекса свойств деталей, не уступающего по уровню свойствам, получаемым пластической деформацией.

Так как процесс лазерной наплавки является основой упомянутых выше технологий, актуальным является исследование физико-механических свойств в зоне наплавки, чему и посвящена настоящая работа.

Лазерная наплавка производилась при мощности излучения лазера 1000 Вт, при различных дистанциях и скоростях наплавки параллельными валиками с различными шагами наплавки на образцы из стали 45. В качестве наплавочного материала использовали порошок самофлюсующегося сплава – ПГ-10H-01 грануляцией 20-80 мкм.

Из приведенных графиков распределения микротвердости по глубине слоя (рис. 1) видно, что после того как на границе основа-покрытие происходит возрастание величины микротвердости, в дальнейшем она находится примерно на одном уровне по всей глубине покрытия для каждого режима лазерной обработки, что может свидетельствовать о достаточно равномерном распределении фаз в покрытии. Другими словами, из-за высокой скорости охлаждения (10³-10⁵ K/c), большинство упрочняющих элементов остаются в твердом растворе γ-Ni матрицы. Небольшие изменения микротвердости связаны скорее всего с супернасыщением этими элементами γ-матрицы, которое связано с повторными нагревами уже наплавленного валика при наплавке соседних валиков. В результате в предшествующем слое могут выделяться некоторые интерметаллические фазы, особенно вблизи ванны расплава и в переходной зоне к твердой фазе, которые и вызывают колебания микротвердости.

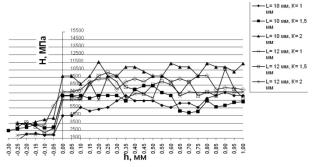


Рис. 1. Распределение микротвердости по глубине слоя про скорости наплавки $V=120~{\rm mm/muh}$

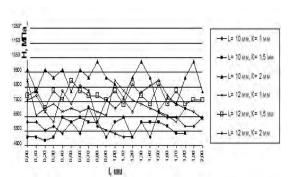


Рис. 2. Распределение микротвер-дости в продольном направлении при скорости наплавки V=120 мм/мин

Графики изменения микротвердости в продольном направлении (рис. 2) показывают, что величина микротвердости находится на таком же уровне.

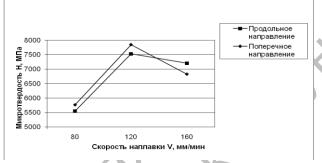


Рис. 3. Зависимость средней микротвердости от скорости наплавки

На рис. 3 приведены зависимости средней микротвердости покрытия от скорости наплавки. Такой характер зависимостей можно объяснить тем, что с изменением скорости наплавки меняется величина удельной энергии Е, вводимой в покрытие. При небольшой скорости наплавки энерговклад в покрытие достаточно большой, происходит его перегрев и образование крупнозернистой структуры с низкой средней микротвердостью. При большой скорости наплавки энерговклад в покрытие уменьшается, результатом является неполное сплавление материала валиков по границам зерен и уменьшение средней микротвердости покрытия. При скорости наплавки 120 мм/мин энерговклад в покрытие обеспечивает образования оптимальной зернистости структуры, которая и дает высокое значение средней микротвердости.