УДК 621 83.06

ЛАБОРАТОРНЫЕ ИСПЫТАНИЯ РЕДУКТОРОВ ДЛЯ МОТОРНОГО ПРИВОДА

В. О. ДЕРБАН, Т. И. ТИМОФЕЕВА, И. Д. ВЛАСОВ Научный руководитель Д. М. МАКАРЕВИЧ, канд. техн. наук, доц. Государственное учреждение высшего профессионального образования «БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ» Могилев, Беларусь

Механические приводы используются практически во всех отраслях народного хозяйства Республики Беларусь. Основу приводов составляют редуцирующие узлы, созданные на базе механических передач различных типов. При этом специализированных предприятий, производящих редукторы (или мотор-редукторы) в нашей стране нет, за исключением некоторых предприятий при научно-исследовательских институтах с опытным производством. Потребность в редукторах покрывается заказами в Российской Федерации («Редуктор» С.-Петербург; «Редуктор» Майкоп; «Уралредуктор» Екатеринбург; «Пермьредуктор»; «Челябредуктор» и др.), в Украине и в странах дальнего зарубежья. В частности, в мире известны такие гиганты редуктростроения, как Flender, Getriebebau NORD, Sew-euro drive (Германия), Brevini Ridutorri (Италия) и многие другие.

Развертывание, производства малогабаритных приводов с редуцирующими узлами на территории нашей страны является достаточно актуальной задачей. Перспективной видится производство мотор-редукторов, особенно в Могилевской области, где осуществляется производство электродвигателей (РУП «Могилевэлектродвигатель»). Однако внедрять необходимо инновационные разработки, позволяющие конкурировать на рынке редукторостоения.

Многочисленные испытания показывают, что разрабатываемые в Белорусско-Российском университете приводы могут успешно конкурировать (по показателю цена/качество) со многими зарубежными образцами. Они обладают следующими преимуществами:

- низкие значения потребляемой энергии (низкая энергоемкость);
- малые габариты (компактность);
- высокие эксплуатационные характеристики.

При этом потенциальным заказчикам требуются сравнительно небольшие партии этих приводов, но достаточно широкая их номенклатура.

В Белорусско-Российском университете ведутся работы по созданию новых типов редуцирующих узлов на базе планетарных передач (прецессионных, цепных, с телами качения), которые удовлетворяют поставленным выше требованиям. Созданы опытные образцы, многие из которых успешно

прошли стадии стендовых испытаний и получили внедрение (в том числе и мелкими сериями) в производство на разных предприятиях и организациях.

Испытания проводились в лаборатории кафедры «Теоретическая механика» университета на специально спроектированном и изготовленном стенде.

Стенд выполнен по схеме с открытым потоком мощности. Сущность этого метода заключается в том, что вся энергия, развиваемая двигателем стенда, проходя через испытываемый редуктор, направляется в нагружающее устройство, где полностью переводится в тепловую энергию. Наряду с недостатками, к которым относится необходимость охлаждения нагружающего устройства, разомкнутый метод испытаний имеет одно важное досточнство — позволяет сделать стенд универсальным, приспособленным к испытаниям редукторов самых разнообразных конструкций и типоразмеров.

Конструкция стенда размещена на жесткой раме. В качестве нагружающего устройства использован электромагнитный порошковый тормоз ПТ-250MI. Данный тормоз имеет возможность создавать постоянные или изменяемые по заданному закону статические нагрузки. Величина задаваемого тормозного момента находится в достаточно широком диапазоне (0–2500 Н·м).

КПД механической передачи определяется по:

$$\eta = \frac{M_2 \cdot \omega_2}{M_1 \cdot \omega_1},$$

где M_1 — момент на входном валу, Н·м; M_2 — момент на выходном валу, Н·м; ω_1 — угловая частота вращения на входном валу, мин⁻¹; ω_2 — угловая частота вращения на выходном валу, мин⁻¹.

Испытаниям были подвергнуты следующие редукторы: цепной редуктор, разработанный профессором Л. А. Борисенко, два планетарных редуктора, разработанных профессором М. Ф. Пашкевичем, планетарный эксцентриковый редуктор и планетарный прецессионный редукторы, разработанные профессором П. Н. Громыко, доцентом Макаревичем Д.М.

Испытаниям был подвергнут редуктор на основе планетарной прецессионной передачи по патенту №11078 от 06.06.2008г. (авторы Макаревич Д.М. и др.), отличающегося от выше указанных тем, что кривошип выполнен в виде эксцентриковой втулки, связанной через сферический подшипник с сателлитом, зубья которого имеют профиль зубьев звездочки цепной передачи, а контактирующая с зубьями сателлита поверхность роликов неподвижного центрального колеса выполнена конической, причем торцы роликов, имеющие в сечении наибольший диаметральный размер, расположены ближе к точке пересечения оси сателлита с осью входного вала.

Результаты испытаний показали, что наибольшим крутящим моментом обладает редуктор, выполненный по патенту РБ №11078, а также обладает высшим КПД, чем передачи указанные выше.