УДК 621.793.184 НАНОСТРУКТУРИРОВАННЫЕ ЗАЩИТНЫЕ ПОКРЫТИЯ, ОСАЖДАЕМЫЕ ИЗ ПОТОКОВ СЕПАРИРОВАННОЙ ПЛАЗМЫ

О. И. ГАПАНОВИЧ, А. Г. ЖИЖЧЕНКО Научный руководитель С. Д. ЛАТУШКИНА, канд. техн. наук Государственное научное учреждение «ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ НАН Беларуси» Минск, Беларусь

Одним из наиболее эффективных путей повышения работоспособности режущего инструмента является нанесение на его рабочие поверхности наноструктурированных защитных покрытий.

Покрытия системы Ti-Al-N осаждались из двух источников сепарированной плазмы вакуумной дуги. Как показали исследования пленок (Ti,Al)N, морфология поверхности покрытий характеризуется микроячеистой структурой и равномерным распределением элементов по толщине. Сохранение элементного состава в покрытии при работе инструмента в реальных условиях (уменьшение толщины в результате износа), обеспечивает стабильность его упрочняющих свойств при длительной работе.

При определении характеристик (табл. 1.) защитных наноструктурированных покрытий установлено, что введение легирующего элемента (алюминия) в покрытия на основе нитрида титана приводит к изменению их физико-механических свойств.

Табл. 1. Структурные и механические характеристики наноструктурированных покрытий

Покрытие	Bec, %					коэф.
	Ti	легирующий элемент	d, нм	L, нм	Н, ГПа	трения
TiN	88,2	_	0,429	28	26,5	0,82
(Ti, Al)N	61,81	1,83	0,428	27	44,4	0,58
	56,20	4,57	0,427	28	40,2	0,38
	74,96	6,86	0,425	26	36,4	0,45
	53,44	10,64	0,422	15	33,9	0,54
	51,08	18,22	0,419	14	35,7	0.45
AlN	_	76,8	_	16	19,2	0,8

Увеличение содержания алюминия приводит к уменьшению периода решетки и размера зерна, однако его однозначного влияния на изменение микротвердости формируемых покрытий не установлено. Полученные результаты позволяют определить оптимальные параметры осаждения покрытий с высокой микротвердостью и низким коэффициентом трения.