УДК 539.216.2:621.793.7

ОСОБЕННОСТИ ВОЗДЕЙСТВИЯ ПОТОКА ВЫСОКОЭНЕРГЕТИЧЕСКИХ ЧАСТИЦ НА СВОЙСТВА ТОНКИХ СЛОЕВ ЗОЛОТА

Е. Н. ГАЛЕНКО¹, С. А. ШАРКО²

¹Мозырский государственный педагогический университет имени И. П. Шамякина Мозырь, Беларусь
²Научно-практический центр НАН Беларуси по материаловедению Минск, Беларусь

Тонкие слои золота перспективны для использования в различных областях электроники, в частности в приборостроении. Во многом это обусловлено высокими значениями электропроводности золота и его химической инертностью. Немаловажно и то, что нанометровые слои металла оптически прозрачны: более половины падающего оптического излучения пропускается при поглощении всего в 10...20 % [1].

Однако получение качественных наноразмерных слоёв золота на чужеродных подложках сопряжено с проблемой согласования по кристаллохимическим параметрам плёнки и подложки. Так, параметры кристаллических решёток золота (4,08 Å) и кремния (5,43 Å) отличаются более, чем на 10 %, что сводит на нет всякую попытку получения эпитаксиальных слоев.

В работе исследовались наноразмерные слои золота, полученные методом ионно-лучевого распыления на кремнии и кварце с применением методики многократного напыления/распыления, и показано заметное улучшение качества плёнок, по сравнению с аналогичными пленками, полученными с применением методики повторного напыления/распыления.

Нанесение слоя золота на подложку производилось распылением мишени золота ионами кислорода с энергией 1500...1600 эВ и плотностью тока ионов 0,1...0,25 мА/см². При использовании дополнительной операции напыления/распыления перед напылением основного слоя на подложку наносился первоначальный слой золота толщиной 2...4 нм в течение 2...3 мин. Распыление этого слоя осуществлялось ионами кислорода с энергией менее 300 эВ и плотностью тока 0,1...0,15 мА/см² до исчезновения металлической проводимости.

Были проведены измерения образцов, полученных в различных режимах: без вращения подложки и без дополнительного распыления (режим 1), напыление с непрерывным вращением подложки с дополнительным распылением (режим 2) и напылением с применением методики многократного напыления/распыления (режим 3).

Электропроводность измерялась стандартным линейным четырёхзондовым методом на основе контактного устройства ИУС-3. Затем рассчитывалось

удельное поверхностное сопротивление слоя металла (в омах на квадрат) по формуле $\rho_s \approx 4,53\,U/I$. Удельное сопротивление определялась из выражения $\rho = \rho_s\,d$, где d – толщина слоя металла. Для определения толщины всех образцов использовалась экспериментальная зависимость толщины слоя от времени напыления при заданных режимах.

В табл. 1 приведены значения удельного поверхностного сопротивления ρ_s , удельного сопротивления ρ и температурного коэффициента сопротивления (ТКС) слоев золота номинальной толщиной 13 нм, полученных в течение 300 с непрерывного напыления, в зависимости от режимов напыления.

Табл. 1. Значения сопротивления и ТКС наноразмерных слоев золота толщиной 13 нм в зависимости от режимов напыления

Параметры	Режим получения		
слоев золота	1	2	3
ρs, Ом/кв.	4	2,76	2,32
ρ, Ом∙нм	53,2	34,67	30,86
α, K ⁻¹	3,81·10 ⁻³	3,65·10 ⁻³	2,05·10 ⁻³

Как видно из табл. 1, происходит уменьшение удельного сопротивления плёнки золота при переходе от первого режима получения к третьему. Величина удельного сопротивления приближается к соответствующему значению для материала в массивном состоянии (23 Ом·нм). Дополнительным свидетельством улучшения качества полученных наноразмерных плёнок золота является улучшение термостабильности, что выражается в соответствующем уменьшении ТКС.

Таким образом, метод ионно-лучевого распыления в сочетании с дополнительной операцией напыления/распыления наноразмерного слоя золота позволяет получать высококачественные слои золота в единицы — десятки нанометров. Улучшение качества слоев металла при использовании дополнительной операции напыления/распыления можно объяснить внедрением в подложку высокоэнергетических атомов золота, которые, с одной стороны, являются источниками точечных дефектов в приповерхностном слое подложки. Использование методики десятикратного напыления и распыления даёт возможность высокоэнергетической части потока осаждаемых атомов металла многократно воздействовать на уже сформированную структуру. За счет этого обеспечивается сильная адгезия слоя металла к подложке.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. Получение методом ионно-лучевого распыления кислородом и оптические свойства ультратонких пленок золота / А. И. Стогний [и др.] // Журн. техн. физики. -2003. - Т. 73, № 6. - С. 86–89.