ВЛИЯНИЕ МОДИФИЦИРОВАНИЯ НА МЕХАНИЧЕСКИЕ СВОЙСТВА СТАЛИ

А. И. ХАБИБУЛЛИН

Белорусско-Российский университет Могилев, Беларусь

При производстве стали как при внепечной обработке, так и в процессе разливки существует возможность ее модифицирования для образования мелкозернистой структуры. Используя технологию механического легирования, можно получать модифицирующую шихту по универсальной технологии как для производства любых типов сплавов, так и в литейном производстве.

Для установления влияния разработанной технологии модифицирования на механические свойства стали совместно со службами объединения ОАО «Могилевлифтмаш» проводились испытания образцов стали 45Л. измельчения зерна и снижения пористости в литейном цеху обычно используют модифицирующую лигатуру на железно-кремниевой основе ФС30РЗМ30 ТУ 14-5-136-81. При взаимодействии редкоземельных модификаторов (РЗМ) с расплавами сталей в первую очередь образуются оксиды, а затем сульфиды. Характерным свойством для образованных посредством РЗМ оксидов и сульфидов является высокая тугоплавкость. Большинство оксидов РЗМ имеет температуру плавления 2200...2300 °C, а сульфидов -2000...2200 °C. Учитывая такую особенность, можно считать, что оксиды и сульфиды РЗМ являются центрами кристаллизации. Поэтому при обработке литых сталей комплексными сплавами с РЗМ отмечается повышение пластичности, ударной вязкости, снижение порога хладноломкости, а также появляется возможность снижения анизотропии свойств деформированного металла.

Перед плавкой на дно индукционной печи помещается порция модифицирующей лигатуры и затем производится загрузка шихтового материала (сталь 45Л). После расплавления стали 45 проводится раскисление алюминием и разливка по ковшам. Масса расплава в печи составляет 250 кг, расход модифицирующей лигатуры Φ C30P3M30 – 0,30 кг. Во время сравнительных испытаний количество Φ C30P3M30 увеличили вдвое – 0,60 кг.

В качестве экспериментальной модифицирующей шихты использовались прессованные брикеты массой 0,30 кг, состоящие из композиции на основе порошка железа, содержащей 8 % легирующего компонента (алюминия).

В условиях заводской лаборатории неразрушающего контроля на разрывной машине Р-10 определялись пределы прочности и относительные удлинения

контрольных и экспериментальных образцов. Объем контроля плавок — девять образцов. Результаты измерений механических свойств полученных отливок после нормализации от температуры 880 °C приведены в табл. 1. Химический состав образцов определялся в лаборатории материаловедения Белорусско-Российского университета. Все образцы содержали: углерода — 0.45 %, кремния — 0.26 %, марганца — 0.24 %, фосфора — 0.00050 %, серы — 0.00020 %.

Табл. 1. Результаты измерений

Номер садки, лигатура	Временное сопротив- ление, Н/мм ²	Относительное удлинение, %	Номер садки, лигатура	Временное сопротив- ление, H/мм ²	Относительное удлинение, %
115, P3M30	596,2	14,2	125, эксперим.	603,8	18,2
116, P3M30	573,2	13,2	126, эксперим.	616,6	15,4
117, P3M30	558,0	12,3	127, эксперим.	591,1	15,8
118, P3M30	563,1	14,0	128, эксперим.	603,8	15,8
119, P3M30	575,8	11,2	129, эксперим.	608,9	16,5
120, P3M30	568,2	13,4	130, эксперим.	603,8	15,8
121, P3M30	586,0	14,9	131, эксперим.	601,3	15,4
122, P3M30	583,4	12,6	132, эксперим.	583,4	14,2
123, P3M30	550,3	9,8	133, эксперим.	591,1	16,9

Среднее значение временного сопротивления для образцов, полученных с использованием Φ C30P3M30, составляет 572 H/мм², для образцов, полученных с применением экспериментальной модифицирующей шихты, -602 H/мм².

Среднее значение относительного удлинения для образцов, полученных с использованием ФС30РЗМ30, составляет 13,2 %, для экспериментальных образцов — 16,2 %. Согласно справочным данным, значения временного сопротивления и относительного удлинения для стали 45Л должны составлять 550 МПа и 12 % соответственно.

Таким образом, несмотря на двойное количество ФС30РЗМ30, литые образцы с применением разработанной модифицирующей шихты имели средние значения временного сопротивления на 5 %, а относительного удлинения — на 22 % выше.