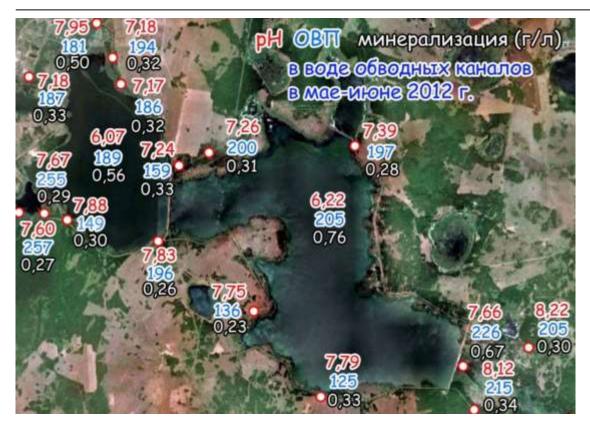
ВЛИЯНИЕ ФИЗИКО-ХИМИЧЕСКИХ СВОЙСТВ ВОДЫ И ПОЧВЫ СИСТЕМЫ РЕКИ ТЕЧА НА ОПАСНОСТЬ ВТОРИЧНОГО РАДИОАКТИВНОГО ЗАГРЯЗНЕНИЯ

Казачёнок Н.Н.

МОУВО Белорусско-Российский университет, г. Могилёв, Республика Беларусь

ПО «Маяк» - радиохимический комбинат для производства оружейного плутония в начальный период своей деятельности сбрасывал жидкие радиоактивные отходы на водосборной территории реки Теча. В дальнейшем технологические водоемы неоднократно промывались, что привело к сбросу большого количества радионуклидов в речную систему. В настоящее время источником радиоактивного загрязнения являются водоемы Теченского каскада и болота в верховьях реки. В речной воде содержание ⁹⁰Sr в несколько раз превышает Уровень вмешательства [4, 5], растет загрязнение воды ³H [3].

Проблемы рационального использования загрязненных радионуклидами водных экосистем отмечаются и для Чернобыльской зоны [8].


Для планирования защитных мероприятий, прогнозирования изменения радиационной обстановки, принятия решений о возможности хозяйственного использования пойменных почв необходимо определить, какие условия могут оказывать влияние на высвобождения радионуклидов, депонированных в почвах и донных отложениях речной системы.

Многочисленные исследования показывают, что физико-химические свойства среды (воды и почвы) оказывают значительное влияние на поведение химических элементов в окружающей среде.

Многие исследователи отмечали, что в кислых болотных почвах (pH менее 4) ¹³⁷Cs переходит в растворимое состояние [5].Растворимость ⁹⁰Sr мало зависит от pH почвенного раствора [7]. Восстановленные формы металлов более подвижны, чем окисленные [5]. Минерализация воды, по нашему мнению, отражает содержание водорастворимых форм соединений в почве на водосборной территории, в том числе, соединений радиоактивных изотопов.

Нами были исследованы физико-химические свойства воды из водоемов Теченского каскада, их правобережного и левобережного обводных каналов, из реки Теча на всем ее протяжении, а также из болотной почвы в верховьях реки.

На рис. 1 представлены данные о физико-химических свойствах воды в водоемах B-10 и B-11, обводных каналах и в фильтрате плотины B-11, а на рис.2 и в табл. 1 о свойствах воды в реке Тече.

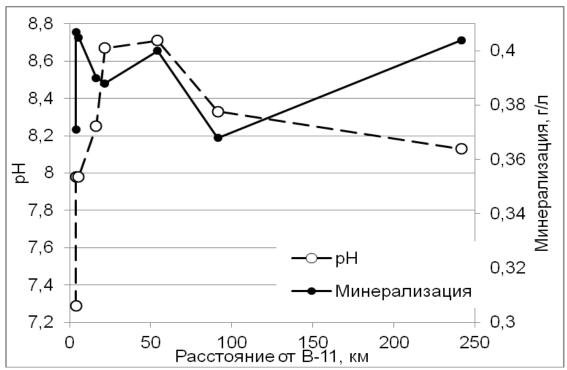


Рис. 1. Физико-химические свойства воды водоёмов и обводных каналов Теченского каскада

В водоемах В-10 и В-11 рН воды составляет 6,07 и 6,22, в обоих обводных каналах вода слабощелочная, причем наиболее высокие значения рН — 8,12 и 8,22 определены в консолях. То есть, несмотря на сульфат, фильтрующийся в большом количестве из водоема В-11 в каналы [2] вода в каналах защелачивается за счет контакта с щелочными породами или стока с водосборной территории. При этом минерализация воды в каналах изменяется слабо, в ЛБК даже несколько снижается. В ПБК заметно изменяется окислительно-восстановительный потенциал. Далее по течению, в районе Надырова моста вода еще более защелачивается, а затем щелочность несколько снижается (рис. 2).

Таблица 1

Таблица 2

Рис. 2. Физико-химические свойства воды реки Теча при одновременном отборе (с учетом времени добегания)

Физико-химические свойства воды реки Теча

Минерализация, г/л ОВП Место отбора pН $7,90\pm0,33$ 218 ± 20 $0,357\pm0,038$ Асанов мост 0.362 ± 0.036 Новый мост $8,36\pm0,20$ 199±27 Надыров мост $8,55\pm1,52$ 206±209 0.383 ± 0.063 $8,39\pm0,86$ 210 ± 41 $0,345\pm0,089$ Муслюмово Бродокалмак $8,14\pm0,56$ 215±133 $0,349\pm0,102$ Затеченское $7,88\pm1,18$ 216±130 $0,352\pm0,105$

Физико-химические свойства почвы в пойме реки Теча

Место отбора	Глубина отбора, см	рН	ОВП
Асанов мост	0-20	4,52	202
	20-40	5,66	163
	40-60	4,71	215
	60-80	4,62	204
	80-100	4,8	209
	100-120	4,79	207
	120-140	4,88	213
	140-160	5,19	184
	160-180	4,69	207
	180-200	4,79	197
Новый мост	0-20	5,89	131
	70-90	6,07	152

Такое защелачивание воды не характерно для болот. Тем более, что почвы, как показано в таблице 2, имеют кислую реакцию. Частично это можно объяснить свойствами почвообразующих горных пород, которые в районе водоема В-11 и обводных каналов представлены в основном карбонатными породами с рН 7,2-8,0. Вследствие этого химический состав первых от поверхности водоносных подразделений — гидрокарбонатно-сульфатный. В верхнем течении (до впадения р. Зюзелги) почвообразующие породы представлены средне-основными магматическими породами (андезитобазальтами) с рН 7,3-8,3, ниже по течению встречаются кислые магматические и метаморфические породы (граниты, гранито-гнейсы) с рН 5,7-7,7 [1].

Слабощелочная реакция речной воды должна препятствовать вымыванию 137 Cs из донных отложений, но на десорбцию 90 Sr она влияния не оказывает. Слабокислая реакция пойменных почв в настоящее время не способствует вымыванию 137 Cs из пойменных почв, однако она достаточно близка к критической. При изменении условий и падении pH до 4,0 и ниже. Поступление 137 Cs в речную воду из почвы может увеличиться во много раз [6].

Поэтому необходимо более глубокое исследование физико-химических свойств пойменной почвы и их влияние на загрязнение грунтовых вод ¹³⁷Cs.

СПИСОК ЛИТЕРАТУРЫ

- 1. Атлас геоэкологических карт на территорию зоны наблюдения Φ ГУП «ПО «Маяк». М., Озерск, 2007. 106 с.
- 2. Зинин А.И. Зинина Г.А., Самсонова Л.М., Ястребков А.Ю. Оценка эффективности природоохранных мер по минимизации радиоактивного загрязнения правобережного канала Теченского каскада водоемов // Вопросы радиационной безопасности. 2010. №3. С. 11-26.
- 3. Казачёнок Н.Н., Попова И.Я., Мельников В.С., Полянчикова Г.В., Коновалов К.Г., Тихова Ю.П. Закономерности распределения ³Н в открытых водоемах и источниках питьевого водоснабжения в зоне влияния ПО «Маяк» // АНРИ. № 3. 2013. С. 43-51.
- 4. Казачёнок Н.Н., Попова И.Я. Динамика радиоактивного загрязнения абиотических компонентов водных экосистем различных типов на Южном Урале // Вода: химия и экология. 2016. №9. С. 9-19.
- 5. Казачёнок Н. Н. Геоэкология техногенных радиоактивных изотопов Могилёв: Белорус.-Рос. ун-т, 2017. 283 с.
- 6. Казачёнок Н.Н., Попова И.Я., Костюченко В.А., Мельников В.С., Полянчикова Г.В., Тихова Ю.П., Коновалов К.Г., Россинская Г.Б., Копелов А.И. Современная радиоэкологическая обстановка и источники радиоактивного загрязнения на реке Теча // Медико-биологические проблемы жизнедеятельности. 2013. № 1. С. 63-70.
- 7. Хлебников Н. А. Определение физико-химических форм состояния Sr(II), Th(IV), U(VI) в пробах воды р.Теча: автореферат дис. ... канд. хим. наук. Екатеринбург, 2012. 23 с.
- 8. Щур А.В., Виноградов Д.В., Агеева Т.Н., Шапшеева Т.П., Валько В.П. Изучение направлений использования пойм рек в зоне радиоактивного загрязнения Чернобыльского происхождения / Экология речных бассейнов. Труды VIII Международной научнопрактической конференции. Владимир: Изд-во ВГУ, 2016. С. 409-413