УДК 621.97

Д. Г. Шатуров, Г. Ф. Шатуров

ТЕХНОЛОГИЧЕСКИЕ ВОЗМОЖНОСТИ УПРАВЛЕНИЯ РЕЖУЩЕЙ СПОСОБНОСТЬЮ ЛЕЗВИЙНОГО ИНСТРУМЕНТА

UDC 621.97

D. G. Shaturov, G. F. Shaturov

TECHNOLOGICAL OPPORTUNITIES OF CONTROLLING CUTTING CAPACITY OF EDGE TOOLS

Аннотация

Приведена методика определения стойкости твердосплавного инструмента в зависимости от режимов резания. Получены зависимости, позволяющие установить диапазон оптимальных скоростей резания в зависимости от условия обработки.

Ключевые слова:

обработка, резец, стойкость, режимы резания, период стойкости.

Abstract

The technique for determining the durability of carbide-tipped tools based on the cutting parameters is presented. The dependencies are obtained that allow the range of optimum cutting speeds to be determined depending on the conditions of machining.

Key words:

machining, cutter, tool durability, cutting parameters, period of durability.

Введение

При обработке конструкционных и легированных сталей и других сплавов инструментами из однокарбидных и двухкарбидных твердых сплавов связь между скоростью резания V и периодом стойкости T_0 инструмента немонотонна и выражается зависимостью в виде кривой с двумя перегибами (рис. 1) [1, с. 60]. Практический интерес представляют собой восходящая ветвь *бв* и нисходящая ветвь *вг* кривой, обеспечивающие максимальную производительность.

Построение эффективных и вместе с тем несложных схем управления процессом резания вызвано отсутствием достаточно простых зависимостей, связывающих стойкость инструмента с первичными параметрами: скоростью резания, подачей и глубиной резания в широких пределах их изменения. Разными авторами было предложено несколько формул, аппроксимирующих экспериментальные значения кривой $T_0 = f(V)$, где T_0 – период стойкости инструмента; V – скорость резания [1, с. 59]:

$$T_0 = C_V / V^{m_1}$$
 (Тейлор, 1905 г.);

 $T_0 = C_V / e^{bV}$ (Сафонов, 1933 г.);

$$T_0 = \frac{C_V}{V^m + C_V / T_{np}}$$
 (Темчин, 1957 г.);

$$T_0 = \frac{C_V - aV + bV^2}{V}$$
 (Метчизен, 1965 г.).

© Шатуров Д. Г., Шатуров Г. Ф., 2016

Рис. 1. Общая зависимость периода стойкости T_0 инструмента от скорости резания V: 1 – подача S; $2 - S_1 < S$; $3 - S_2 > S$

Профессором Т. И. Грановским для аппроксимации зависимости $T_0 = f(V)$ предложено уравнение вида [2, с. 148]

$$T_0 = C_T V^b e^{-CV}$$
 (1985 г.),

правая часть которого – произведение степенной функции на показательную.

Однако все представленные формулы являются эмпирическими. Они выведены в результате обработки данных экспериментальных исследований, из которых определяются параметры C_v , m_1 , a, C_T , b и c, и не базируются на физической природе механизма изнашивания инструмента. Для их получения необходимы материалы и многочисленные эксперименты по изнашиванию и стойкости.

При этом разные авторы придерживаются различных гипотез относительно зависимости $T_0 = f(V)$. Так, согласно исследованиям профессора Г. И. Грановского, для всего диапазона подач *S* и глубин резания *t* максимум стойкости инструмента имеет место при одной и той же скорости резания V_0 [2, с. 150], меньшей, чем скорость V_n , соответствующая скорости резания в точке перегиба кривой $T_0 = f(V)$ (см. рис. 1) [2, с. 148]. При изменении подачи *S* и глубины резания *t* количественное значение стойкости T_0 изменяется, а максимум стойкости T_0^{max} имеет место при одной и той же скорости резания V_0 (см. рис. 1).

Согласно исследованиям профессора А. Д. Макарова, зависимость $T_0 = f(V)$ представляет собой плавные кривые, имеющие точки перелома и точки максимума [3, с. 52]. Так, например, при работе с подачей 0,1 мм/об точка перелома соответствует скорости резания V = 151 м/мин, а для подачи 0,4 мм/об – скорости резания 100 м/мин [3, с. 51].

Положение точек перелома и точек максимума на кривой $T_0 = f(V)$ зависит от физико-механических свойств обрабатываемого и инструментального материалов и условий резания, влияющих на температуру резания [3, с. 44]. При об-

работке углеродистых и легированных сталей каждому значению подачи соответствуют оптимальная скорость резания V_0 и оптимальная температура, при которой достигается максимальная размерная стойкость инструмента [3, с. 61]. Несоответствие скорости резания оптимальной величине подачи и глубине резания всегда приводит к снижению размерной стойкости и точности обработки.

Оптимальная скорость резания при обработке различных материалов колеблется широких пределах: В от 10...30 м/мин – при обработке закаленных сталей и жаропрочных сплавов твёрдосплавным инструментом до 300...350 м/мин – при обработке углеродистых сталей минералокерамическим инструментом [3, с. 43]. Так, при точении электротехнической стали резцом из сплава Т15К6 наиболее резко снижается интенсивность износа резца при повышении скорости резания от 70 до 195 м/мин. Температура контакта при этом возрастает от 560 до 700 °С [4, с. 37].

При повышении скорости резания и температуры сверх оптимальной $(\Theta = 910 \text{ °C})$ интенсивность износа резца возрастает в результате: ослабления защитного действия окисной пленки, образующейся на контактных поверхностях инструмента, усиления диффузионных процессов между материалами детали и инструмента, удаления материала инструмента из зон пластического контакта и других причин [3, с. 231; 4, с. 39].

Таким образом, рост температуры в зоне резания и связанное с этим изменение интенсивности износа лезвия резца являются следствием преимущественно абразивного и адгезионного износа с образованием нароста при скоростях резания $V \le 90$ м/мин, адгезионного и окислительного – при скоростях резания V = 90...190 м/мин и диффузионного – при скоростях резания V > 190 м/мин [3, с. 234]. Наличие точек перегиба (перелома) и точек максимума на кривой $T_0 = f(V)$ является особенностью обработки сталей и сплавов твердосплавным инструментом.

Установление зависимости $T_0 = f(V)$ в результате стойкостных испытаний трудоемко, материалоемко, поэтому определение аналитическим путем этой зависимости с использованием уже известных экспериментальных данных [5], отражающих накопленный в прошлом опыт, является исключительно актуальной научной и практической задачей металлообработки.

Основная часть

исследованиям Согласно профессора Г. И. Грановского [2, с. 148], профессора А. Д. Макарова [3] и др., в достаточно широком диапазоне изменения скорости резания зависимость $T_0 = f(V)$, как уже отмечалось, представляет собой плавную кривую, имеющую точку экстремума, в которой достигается максимальная стойкость инструмента T_0^{\max} , и точку *В* перегиба, соответствующую скорости V_n и стойкости Т_n (рис. 2). Для участка кривой, когда скорость резания $V \ge V_n$, где V_n скорость резания, соответствующая точке *B* перегиба кривой $T_0 = f(V)$, регрессионные зависимости имеются [5, с. 265] для определения скорости резания и стойкости инструмента.

$$V = \frac{C}{T_0^m}; \tag{1}$$

$$T_0 = \left(\frac{C}{V}\right)^{\frac{1}{m}}; \tag{2}$$

$$C = \frac{C_V \cdot K_V}{t^x S^y}, \qquad (3)$$

где V – скорость резания, м/мин; S – подача, мм/об; t – глубина резания, мм; T_0 – период стойкости резца, мин; m – показатель относительной стойкости, для стали m = 0, 2 [5]; C_V, K_V, x, y – коэффициенты и показатели степени [5, Т. 2, с. 265].

При $V < V_n$ зависимостями (1) и (2) пользоваться нельзя, поскольку для периода стойкости получаем его завышенное значение (см. рис. 2, линия изображена пунктиром) [6, с. 262].

Поскольку верхний участок экспериментальной плавной кривой $T_0 = f(V)$

симметрично расположен относительно оси ординат, проходящей через точку скорости резания V_0 на оси абсцисс, соответствующую максимальному периоду стойкости T_0^{max} инструмента, то для получения более простой аналитической зависимости показательную функцию [2, с. 148] можно предтавить в новой системе координат *YOX* показательной функцией следующего вида (см. рис. 2) [7, с. 170]: $y = be^{-a^2x^2}$. (4)

Рис. 2. Кривая зависимости периода стойкости T_0 от скорости резания $V: B, B_1$ – точки перегиба

Функция (4) при x = 0 принимает значение

$$y_{\rm max} = b = T_0^{\rm max} \, .$$

График y = f(x) симметричен относительно оси *Y* и имеет точки перегиба *B* и *B*₁ (см. рис. 2). Исследуем зависимость (4). Рассмотрим изменение периода стойкости инструмента *T*₀ от скорости резания *V* на участках кривой *бв* и *вг* (см. рис. 1) или на участках кривой $-x_B \le x \le 0$ и $0 \le x \le \infty$ (см. рис. 2), разделенных точками перегиба B_1 и B. Определим угол наклона касательной в точке B перегиба. Для этого возьмем производную dy/dx.

$$y' = -2ba^2 x e^{-a^2 x^2} \,. \tag{5}$$

Для определения координат перегиба точки *В* (см. рис. 2) возьмем производную от выражения (5) и полученную

функцию приравняем к нулю.

$$y^{\prime\prime} = -2ba^{2} \left[e^{-a^{2}x^{2}} + x \left(e^{-a^{2}x^{2}} \right)^{\prime} \right];$$
$$-2ba^{2} e^{-a^{2}x^{2}} (1 - 2a^{2}x^{2}) = 0.$$

Откуда

$$x_B = \pm \frac{1}{a\sqrt{2}},\tag{6}$$

или

$$a = \pm \frac{1}{\sqrt{2}x_B},\tag{7}$$

где x_B – расстояние расположения точек перегиба *B* и *B*₁ от оси *y*.

Подставив значение x_{B} в (4), имеем

$$y_B = T_B = T_{II} = \frac{b}{\sqrt{e}} = \frac{T_0^{\text{max}}}{\sqrt{e}}.$$
 (8)

Откуда

$$T_0^{\max} = T_{\Pi} \sqrt{e},$$

где T_{Π} – период стойкости резца при скорости резания V_{Π} , соответствующей точке *В* перегиба кривой $T_0 = f(V)$ в системе координат T_0O_1V (см. рис. 2); T_0^{max} – максимальный период стойкости резца, соответствующий скорости V_0 .

Определим угол φ наклона касательной в точке перегиба $B(X_B, y_B)$ кривой $T_0 = f(V)$. Подставив значения x_B (6) и y_B (8) в (5), получим

$$tg\phi = -ab\sqrt{2/e} = -\frac{y_B}{x_B}.$$
 (10)

Очевидно, что угол φ по абсолютной величине равен углу α , $\alpha = |\varphi|$ (см. рис. 2), а $x_B = V_n - V_0$.

$$tg\alpha = \frac{y_B}{x_B} = \frac{T_n}{V_n - V_0},$$
 (11)

где V_0 – скорость резания, соответствующая наивысшей стойкости инструмента T_0^{\max} .

Из (11) имеем

или

$$V_0 = V_n - T_n / \operatorname{tg} \alpha. \tag{12}$$

С учетом полученных выражений для a (7) и $b = T_0^{\max}$ (8) при $x = V - V_0$ зависимость (4) представляется в следующем виде:

$$T_{0} = \frac{T_{n}\sqrt{e}}{e^{\frac{1}{2}\left(\frac{V-V_{0}}{V_{n}-V_{0}}\right)^{2}}},$$
(13)
$$T_{0} = \frac{T_{n}\sqrt{e}}{e^{t_{1}^{2}/2}},$$
(14)

$$\frac{V - V_0}{V_n - V_0}$$
. (15)

Определим угол наклона касательной к кривой $T_0 = f(V)$ в точке *В* перегиба, используя зависимость (2). Для этого возьмем производную dT_0 / dV .

$$tg\varphi = \left(C^{\frac{1}{m}}V^{\frac{-1}{m}}\right)' = -\frac{1}{m}C^{\frac{1}{m}}V^{\frac{-1}{m}-1} =$$
$$= -\frac{1}{m}\frac{C^{\frac{1}{m}}}{V^{\frac{1+\frac{1}{m}}{m}}}.$$
(16)

Тогда, с учетом (2), для точки *В* перегиба получаем

$$tg\varphi = -5\frac{C^5}{V_n^6} = -5\frac{T_n}{V_n}.$$
 (17)

Поскольку угол $\alpha = |\varphi|$, то, используя зависимость (12), имеем

$$V_0 = V_n - \frac{T_n}{\frac{5T_n}{V_n}} = V_n - \frac{1}{5}V_n = \frac{4}{5}V_n = 0,8V_n.$$
(18)

Учитывая, что кривая $T_0 = f(V)$ симметрично расположена относительно оси *y*, определим значение скорости V_{n1} , соответствующей второй точке B_1 перегиба этой кривой (см. рис. 2):

$$V_{n1} = V_0 - (V_n - V_0) =$$

= $2V_0 - V_n = \frac{3}{5}V_n = 0, 6V_n.$ (19)

После подстановки зависимости (18) в (13) получим более упрощенную формулу для определения периода стойкости

$$T_{0} = \frac{\sqrt{e}T_{n}}{e^{\frac{1}{2}\left(5\frac{V}{V_{n}}-4\right)^{2}}};$$
 (20)

$$V_{n1} \leq V \leq V_n$$

Однако при скоростях резания $V > V_n$ значение периода стойкости T_0 , вычисленное по зависимости (20), значительно меньше экспериментальных значений, полученных из (2). Тогда при $V \ge V_n$ период стойкости определяется по зависимости (2), а использование формулы (20) возможно с некоторым коэффициентом K_T , увеличивающим расчетную величину периода стойкости (20) до значений, полученных из зависимости (2).

$$K_{T} = \frac{(C/V)^{5}}{T_{n}\sqrt{e}}e^{t_{1}^{2}/2} .$$
 (21)

С учетом (15) можно записать

$$t_1 = \frac{V - V_0}{V_n - V_0} = \frac{V - 0, 8V_n}{V_n - 0, 8V_n} = 5\frac{V}{V_n} - 4.$$
 (22)

Откуда

 $V = V_n (0, 2t_1 + 0, 8).$ (23)

$$K_{T} = \frac{C^{5}}{V_{n}^{5}} \frac{e^{t_{1}^{2}/2}}{(0,2t_{1}+0,8)^{5} \cdot T_{n}\sqrt{e}} =$$
$$= \frac{T_{n}e^{t_{1}^{2}/2}}{T_{n}\sqrt{e}(0,2t_{1}+0,8)^{5}} = \frac{e^{t_{1}^{2}/2}}{\sqrt{e}(0,2t_{1}+0,8)^{5}}$$

Тогда период стойкости T_0 резца при $V > V_n$, с учетом (14), определяется из следующей зависимости:

$$T_0 = \frac{T_n \sqrt{e}}{e^{t_1^{2}/2}} \cdot K_T = \frac{T_n}{(0, 2t_1 + 0, 8)^5}.$$

Подставив значение *t*₁ из (22), окончательно получим

У зависимостей (2) и (13) общая точка *В* перегиба кривой $T_0 = f(V)$ с координатами $B(V_n, T_n)$, в которой имеет место равенство периодов стойкости.

Значения скорости резания V_n и стойкости T_n определяются из следующих зависимостей [8]:

$$V_n = C^{1,25} \left(\frac{u_0}{1000\delta_0 \cdot K_p} \right)^{0,25};$$
(25)

$$T_n = \frac{1000\delta_0 \cdot K_p}{V_n \cdot u_0}, \qquad (26)$$

где δ_0 – оптимальная величина износа задней поверхности резца, мкм; u_0 – относительный удельный размерный износ лезвия, мкм/км [5]; K_p – коэффициент перевода линейного износа задней поверхности резца в размерный, $K_p \approx tg\alpha_3$ (α_3 – задний угол заточки резца [8]).

Таким образом, диапазон изменения скорости резания, соответствующий увеличенной стойкости лезвийного инструмента,

$$0, 6V_n \le V \le V_n,$$

а максимальная стойкость инструмента имеет место при $V_0 = 0, 8V_n$.

Адекватность зависимостей (20), (24) проверялась, используя экспериментальные данные и данные, приведенные в [9, с. 141], которые были получены «в результате суммирования многих экспериментальных исследований советской школы резания металлов

> 400 мин

300

200

100

0

60

 T_0

опыта новаторов производства». И Заготовка диаметром 150 мм ИЗ стали 45 обрабатывалась резцом Т15К6 V = 60...160 м/мин; при режимах: t = 4 мм; S = 0,3 мм/об; $u_0 = 5$ мкм/км; $K_n = 0,19;$ x = 0,15; $\delta_0 = 650$ мкм; y = 0,35 [5].

В результате расчета получили $C_v = 350;$ $K_v = 0,81;$ следующее: $C = 351; V_n = 121$ м/мин ; $T_n = 204$ мин; $V_0 = 97$ м/мин; $T_0^{\text{max}} = 336 \text{ мин};$ $V_{n1} = 73$ м/мин (рис.

Расчетные данные по стойкости (см. рис. 3) отличаются от экспериментальных не более чем на 5 %.

Отметим, что увеличение скорости резания от V_{n1} до V_0 приводит к повышению стойкости инструмента и производительности.

Представленные зависимости дают возможность определить период стойкости резца в зависимости от скорости резания, а также величину скорости резания, соответствующую максимальной стойкости инструмента, используя следующий алгоритм:

$$t \to S - C_V \to C(3) \to V_n(25) \to$$

 $\to V_{n1}(19) \to T_n(26) \to V_0(18) \to$
 $\to T_0(2;24) \to T_0(20) \to T_0^{\max}(9).$

Кроме того, они позволяют решить и обратную задачу: определить скорость резания при назначении напе-

ред заданной стойкости инструмента, например, при обработке поверхностей валов на автоматической линии.

Анализ зависимости (24) показывает, что увеличение глубины резания *t* и подачи S приводит к уменьшению расчетных значений скорости V_0 и повышению периода стойкости T_0 соответственно.

СПИСОК ЛИТЕРАТУРЫ

1. Подураев, В. Н. Автоматически регулируемые и комбинированные процессы резания / В. Н. Подураев. – М. : Машиностроение, 1977. – 304 с.

2. **Грановский, Г. И.** Резание металлов / Г. И. Грановский, В. Г. Грановский. – М. : Высш. шк., 1990. – 512 с.

3. **Макаров, А. Д.** Износ и стойкость режущих инструментов / А. Д. Макаров. – М. : Машиностроение, 1966. – 257 с.

4. Макаров, А. Д. Оптимизация процесса резания / А. Д. Макаров. – М. : Машиностроение, 1976. – 278 с.

5. Справочник технолога-машиностроителя : в 2 т. / Под ред. А. Г. Косиловой, Р. К. Мещерякова. – М. : Машиностроение, 1985.

6. Бобров, В. Ф. Основы теории резания металлов / В. Ф. Бобров. – М. : Машиностроение, 1975. – 344 с.

7. **Бронштейн, И. Н.** Справочник по математике / И. Н. Бронштейн, К. А. Семендяев. – М. : Глав. ред. физ.-матем. лит., 1980. – 975 с.

8. Шатуров, Д. Г. Обеспечение геометрических характеристик поверхностей валов на основе прогнозирования износа резцов и жесткости технологической системы : автореф. дис. ... канд. техн. наук / Д. Г. Шатуров. – Могилев, 2015. – 23 с.

9. Резание металлов / Г. И. Грановский [и др.]. – М. : Машгиз, 1954. – 472 с.

Статья сдана в редакцию 21 марта 2016 года

Денис Геннадьевич Шатуров, канд. техн. наук, Белорусско-Российский университет. Тел.: +375-222-25-67-98. Геннадий Филиппович Шатуров, д-р техн. наук, проф., Белорусско-Российский университет. Тел.: +375-222-25-67-98.

Denis Gennadyevich Shaturov, PhD (Engineering), Belarusian-Russian University. Phone: +375-222-25-67-98. Gennady Filippovich Shaturov, DSc (Engineering), Prof., Belarusian-Russian University. Phone: +375-222-25-67-98.