УДК 620.179.14

ВЛИЯНИЕ ТЕМПЕРАТУРЫ ЗАКАЛКИ НА МАГНИТНЫЕ СВОЙСТВА ИНСТРУМЕНТАЛЬНЫХ УГЛЕРОДИСТЫХ СТАЛЕЙ

3. М. КОРОТКЕВИЧ

Государственное научное учреждение «ИНСТИТУТ ПРИКЛАДНОЙ ФИЗИКИ НАН Беларуси» Минск, Беларусь

Определяющим фактором, влияющим на свойства инструментальных углеродистых сталей, является их термообработка. Поэтому ее контроль представляет большой интерес для производства и промышленности.

Так как магнитные исследования сталей ранее проводили на стандартной баллистической установке БУ-3, то измерялись только некоторые основные магнитные характеристики. Современные магнито-измерительные установки (например, установка УИМХ) позволяют существенно увеличить число измеряемых характеристик и, тем самым, расширить возможности магнитного контроля температуры, при которой проводилась термообработка инструмента.

электрических Изменение магнитных И свойств твердости углеродистой стали обусловлено инструментальной при закалке мартенситным превращением, происходящем при быстром охлаждении стали от температур выше точки A_{c1} (температуры превращения аустенита в равной 723 °C). Степень этого изменения определяется температурой нагрева под закалку и скоростью охлаждения.

Закалка инструментальных углеродистых сталей от температур до 710 °C включительно существенных структурных изменений и фазовых превращений в стали, по сравнению с исходным состоянием, не вызывает [1]. Поэтому большинство ее магнитных характеристик и твердость при закалке от температур нагрева в данном диапазоне изменяются незначительно. Некоторые из этих характеристик приведены на рис.1.

Увеличение температуры нагрева под закалку свыше точки A_{c1} приводит к значительным изменениям магнитных свойств исследуемых сталей.

Намагниченность насыщения M_s для эвтектоидных сталей практически не изменяется от температуры закалки, в то время как заэвтектоидные стали имеют тенденцию к снижению этого магнитного параметра. Величина коэрцитивной силы H_c существенно увеличивается (приблизительно в 3 раза) относительно значений при температуре 710 °C, но при достижении равновесного структурного состояния дальнейшее увеличение температуры нагрева под закалку не влияет на эту величину, поэтому контролировать узкий диапазон закалки и перегрев под закалку по коэрцитивной силе не возможно.

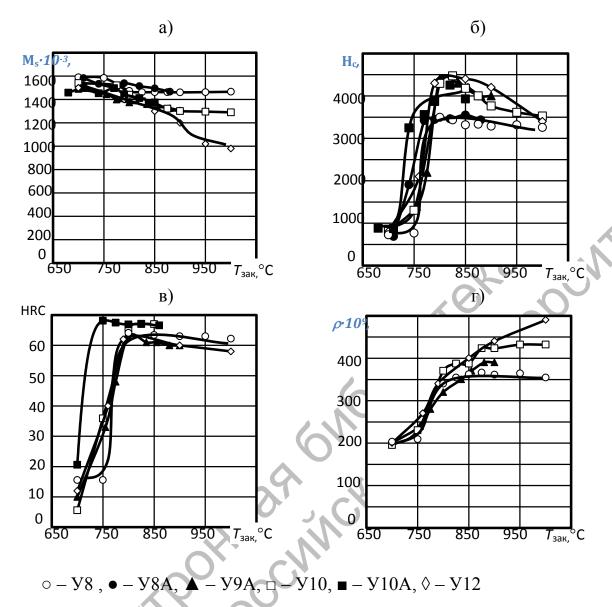


Рис. 1. Зависимости магнитных свойств, твердости и электрического сопротивления инструментальных углеродистых сталей от температуры закалки

Твердость HRC ведет себя по аналогии с коэрцитивной силой. Единственным из стандартных параметров, по которому можно дать оценку температуры закалки, является электрическое сопротивление ρ , но и его можно использовать только для заэвтектоидных сталей, так как для эвтектоидных он ведет себя аналогично H_c и HRC.

СПИСОК ЛИТЕРАТУРЫ

1. **Михеев, М. Н.** Магнитные методы структурного анализа и неразрушающего контроля / М. Н. Михеев, Э. С. Горкунов. – М. : Наука, 1993. – 252 с.