
New J. Phys. 23 (2021) 093016 https://doi.org/10.1088/1367-2630/ac20ba

OPEN ACCESS

RECEIVED

26 April 2021

REVISED

19 August 2021

ACCEPTED FOR PUBLICATION

24 August 2021

PUBLISHED

10 September 2021

Original content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the
title of the work, journal
citation and DOI.

PAPER

Elastic and inelastic particles scattering by dust acoustic
soliton. A new oscillatory process in dusty plasma

F M Trukhachev1,2,3,∗ , N V Gerasimenko3 , M M Vasiliev1,2 and O F Petrov1,2

1 Joint Institute for High Temperatures of the Russian Academy of Sciences, Moscow, 125412, Russia
2 Moscow Institute of Physics and Technology, Dolgoprudnyi, Moscow Region, 141701, Russia
3 Belarusian-Russian University, Mogilev 212000, Belarus
∗ Author to whom any correspondence should be addressed.

E-mail: ftru@mail.ru

Keywords: soliton, particle scattering, wave–particle interaction, charged particles oscillation

Supplementary material for this article is available online

Abstract
The parameters of scattering (reflection) of charged particles by the leading edge of a dust acoustic
soliton are analyzed. The soliton profile is calculated using the Sagdeev pseudopotential approach.
To analyze the motion of charged particles, the Newton’s second law is used. It is shown
theoretically that the charged particle scattering can be elastic and inelastic. The nature of
scattering significantly depends on the presence of dissipation. In the dissipative case, charged
particles scattering is the process of an oscillatory nature. It is shown that it can be considered as a
new type of oscillations of charged particles in plasma. The parameters of the oscillations are
calculated both numerically (nonlinear case) and analytically (within the linear approximation).
Theoretical results are compared with known experimental results, as well as the applied aspect is
stated.

1. Introduction

Applications of plasma waves physics include: plasma heating in fusion devices [1], charged particle
acceleration [2, 3], astrophysics [4], etc. The studying of a wave–particle interaction is the important
component of this research area. Landau damping [5] and beam instabilities [6, 7] are examples of the
linear wave–particle energy exchange processes. These phenomena affect the particle distributions and can
be analyzed within the framework of the wave kinetic theory. Nonlinear effects appear in the case of large
amplitude waves, namely: (1) the formation of the electron phase-space hole caused by the resonance
trough trapping of particles [8–10]; (2) unidirectional transfer of charged particles by an electric field of
solitons and the excitation of soliton currents [11–13]; (3) generation of accelerated particle beams and
formation of multi-streaming flows by nonlinear waves and solitons of supercritical amplitude [14–16].

Let us consider the last case in more detail. Nonlinear electron oscillations of large amplitude were
studied theoretically in [17]. Plane oscillations in homogeneous plasma were found to be stable below
critical amplitude. For larger amplitudes it was found that multi-streaming flow develops on the first
supercritical oscillation. Subcritical amplitudes are characterized by the resonant motion of electrons in the
oscillatory field. The amplitude threshold for the wave breaking is significantly reduced in warm plasmas
[18]. The phenomenon of the breaking of powerful electron plasma waves was also observed experimentally
[19]. It is important to note that the speed of electrons accelerated by the wave was twice the speed of the
wave itself in the case of a collisionless plasma. The process of breaking of strongly nonlinear waves and
solitons in collisional plasmas was studied in experiments [14–16]. The speed of particles accelerated by the
wave in the collisional case was equal to the wave speed. Particles in this case seemed to ‘stick’ to the leading
edge of the wave. In [15] this process is called ‘no-trough trapping’, because the traditional potential well
[12] in the case [14–16] was not observed. According to [15, 16], the phenomenon of sticking accelerated
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particles to the front of the wave is caused by dissipative forces. It was also presented in [16] that in the
collisional case, particles experience large-amplitude oscillations before sticking to the front of the wave.

In this work, it is shown that the oscillations described in [16] can be considered as a new oscillatory
process in plasma. A more rigorous model of warm plasmas is proposed, within the framework of which
subcritical solitons are able to scatter particles of the Maxwellian tail. We will assume that there are not
many such particles and their influence on the soliton can be neglected in the first approximation. An
analysis of the new oscillations is carried out. The collisionless and collisional cases are considered within
the paradigm of elastic and inelastic scattering of particles by solitons and nonlinear waves. The theoretical
results obtained in the work are compared with known experiments.

2. Theoretical model

Let us consider a dust acoustic (DA) mode for analyzing the process of scattering of charged particles by a
soliton. The main reason for this choice is the availability of detailed experimental data, presented in
[14–16]. Experiments in the dusty plasma provide unique opportunities for analyzing both the evolution of
waves [20, 21] and the motion parameters of individual charged particles interacting with the wave
[14–16, 22, 23].

Results obtained for the DA mode can be easily generalized to the cases of ion- and electron-acoustic
modes due to their similarity.

Interacting dust charged particles can be divided into two groups. The first group includes transit
particles that remain inside the soliton profile for a short time. All kinematic parameters of the transit
particles in front of the conservative soliton and behind it are the same, except for the position in space,
which changes by several Debye radii [11, 13]. Such particles do not decrease the energy of the conservative
soliton, so the process can be considered as adiabatic. The properties of the transit particles in the
dissipative case are considered in detail in [24], where the difference between dissipative and conservative
solitons was discussed. The second group includes scattered particles that are accelerated by the soliton to
velocity Vp, which is exceeding soliton velocity V sol or equal to it (Vp � V sol). In this case one can observe a
multi-streaming flow of charged particles. It is shown in [16] that Vp ≈ V sol in the presence of dissipation
and Vp = 2V sol in the collisionless case. The acceleration of particles of the second group is provided by the
energy of the soliton, this process leads to the damping of the wave. It is worth noting that in open systems,
nonlinear waves and solitons can receive energy from external energy sources [25, 26] such as beams of
charged particles, external electric fields, etc. In this case, self-excitation of waves can be observed with an
evolution of a different nature, such as amplification, steepening, stationary propagation, breaking.

We consider a stationary wave process, where amplification and dissipation processes are in balance. Let
us focus in more detail on the analysis of the scattered particles properties. In the case of electron waves,
they are registered by grid analyzers [19], in the case of DA waves, their properties are measured directly by
using high-frequency video cameras [14–16]. If there are many particles of such type, this inevitably affects
both nonlinear waves and a medium. In particular, the breaking of nonlinear waves and solitons is observed
in [14, 16, 19], which leads to the formation of cavitons (local decrease in plasma concentration) [19] and
the plasma heating [14, 15]. In the case of warm plasmas the acceleration (scattering) begins with particles
of the Maxwellian tail.

Let us consider the case of a warm dusty plasma. We assume that the plasma contains populations of
electrons, ions, monodisperse negatively charged dust particles, and a neutral gas. We do not take into
account the influence of external electric and magnetic fields. Then, for the DA mode, we can write the
following condition [27].

Vsol ∼ Cd � VTi � VTe, (1)

where Cd is DA velocity, υTe,Ti =
√

Te,i/me,i is thermal velocities of electrons and ions. Figure 1
schematically shows the soliton–particle interaction in the wave frame. In this frame all particles drift from
right to left with a velocity V sol everywhere except the soliton location region. In accordance with inequality
(1), the drift of ions and electrons can be neglected, considering their distribution to be Boltzmann, but for
dust particles, the drift cannot be neglected. In figure 1, trajectories of the transit particles are shown by the
solid curve, trajectories of the scattered particles by the dashed curve. In our chosen frame the problem can
be reduced to the scattering of the dust particles by the static soliton. In the Lagrange form, the particle
motion can be described by the following equation:

md
d2ξ′

dt2
= Fsol − νdn

(
dξ′

dt
− Vsol

)
, (2)
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Figure 1. Schematic representation of the soliton-particle interaction in the moving (wave) frame; curve 1 - transit particles,
curve 2 - scattered (reflected) particles, 3 - classical soliton profile, 4 - damped soliton profile (see details in[29]).

where ξ′ = x − Vsol · t. Hereinafter, the symbols ξ, ξ′ denote the coordinate of the particle in the wave
frame, while the symbols x, X are used for the fixed frame. Fsol is the electric force acting on the dust
particle from the soliton. This force is localized in space. The dissipative force is described by the second
term on the right-hand side of equation (2), where νdn is dust-neutral collision frequency which expressed
by the formula νdn = 8

√
2πr2

dnnTn/ (3mdυTn) [28], where rd = const. is a dust particle radius,
υTn =

√
Tn/mn is a thermal velocity of neutral gas atoms (molecules). We consider the neutral drag force

as the only dissipation mechanism. Equation (2) is similar to equation (7) from [16], but here the wave
frame is used. Therefore, the dissipative term is written taking into account the drift of the neutral gas with
a velocity of −V sol.

To solve equation (2), it is necessary to specify a soliton profile, which allows to determine the force Fsol.
To date no self-consistent models describing stationary dissipative acoustic solitons were presented.
Nevertheless, a number of important physical phenomena can be described by using the classical soliton
profile. As we show below, this approach is verified experimentally. Section 4 discusses the results of
experiments in collisional plasmas, in which nonlinear waves have a soliton-like profile. The reasonableness
of using the classical profile to describe the properties of dissipative solitons is confirmed by theoretical
models [29, 30]. These models are not stationary, since they take into account only the dissipation, but do
not consider external amplification forces. Evolution in this case corresponds to slow decay. It was also
shown that for small dissipation, the profile of the dissipative soliton is close to the classical (∼sech2(x)). A
more rigorous numerical solution of the KdV equation (see [29]) gives the profile shown in figure 1 by the
dotted curve. In work [16], where the oscillations under study were discovered for the first time, the
calculations were carried out under the assumption of the classical soliton profile. This approach is not
self-consistent, although it gives a satisfactory description of experimental results. We use the same
approach, but take into account the pressure of the dust component associated with the thermal motion of
dust particles. The system of normalized hydrodynamic equations can be written in the form [31, 32]:

Ne (Φ) = exp

(
eϕ

Te

)
≡ exp (σiΦ) , (3)

Ni (Φ) = exp

(
− eϕ

Ti

)
≡ exp (−Φ) , (4)

∂υd

∂τ
+ υd

∂υd

∂X
=

∂Φ

∂X
− σd

Nd

∂Pd

∂X
, (5)

∂Pd

∂τ
+ υd

∂Pd

∂X
+ 3Pd

∂υd

∂X
= 0, (6)

∂Nd

∂τ
+

∂Ndυd

∂X
= 0, (7)

∂2Φ

∂X2
= δeNe − δiNi + Nd. (8)

Here densities, initial densities, and normalized densities of particles are denoted as nj, n0j, Nj = nj/n0j,
respectively, where j = (e; i; d; n) corresponds to electrons, ions, dust particles and neutral atoms
(molecules); ϕ and Φ = eϕ/T i are potential and normalized potential respectively; Z is dimensionless dust
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charge; Cd =
√

ZTi/md is the DA velocity; δj = n0j/(Zn0d) (quasi-neutrality condition gives δe – δi + 1 =
0); Pd is the dust fluid pressure normalized by p0 = n0dTd; σi = T i/Te and σd = Td/(Z · T i); υd is dust
velocity normalized by Cd; X = x/λD, τ = tωd where λD =

√
Ti/4πZn0de2 is a Debye radius,

ωd =
√

4πn0dZ2e2/md is a plasma frequency for the dust component.
In the general case, the dissipative and amplifying mechanisms should be taken into account in

equations (3)–(8) (see, for example, [33] for linear problem). Unfortunately, strongly nonlinear
hydrodynamic self-consistent models for describing DA waves containing both dissipation and
amplification do not yet exist. Therefore, we use the following approximation. In the stationary case, we
consider the dissipative and amplifying forces to be small and compensating each other. A similar approach
was used in works [16, 24].

Let us introduce the boundary conditions Φ, υd → 0 and Nj, Pd → 1 for X →±∞. We apply the
following substitution ξ = X − Mτ , where M = V sol/Cd is the Mach number. This substitution reduces
system (3)–(8) to the equation:

d2Φ

dξ2
= −dE

dξ
= δe exp (σiΦ) − δi exp (−Φ) + Nd (Φ) , (9)

where E = −∂Φ/∂ξ is the normalized electric field. The dust density can be expressed as:

Nd (Φ) =
σ1√
2σ0

√√√√
1 +

2Φ

M2σ2
1

−

√(
1 +

2Φ

M2σ2
1

)2

− 4
σ2

0

σ4
1

, (10)

where σ0 =
√

3σd/M2, σ1 =
√

1 + σ2
0 . A detailed derivation of the formulas (9) and (10) is presented in

works [31, 32]. An expression for the Sagdeev pseudopotential U (Φ) can be written in the form

0.5
(
dΦ/dξ

)2
+ U (Φ) = 0, where:

U (Φ) =
δe

σi

[
1 − exp (σiΦ)

]
+ δi

[
1 − exp (−Φ)

]
− M2√σ0

(
exp

[
θ(Φ)

2

]
+

1

3
exp

[
−3θ(Φ)

2

]
− Y

)
. (11)

Here θ(Φ) = cosh
[

σ2
1

2σ0

(
1 + 2Φ

M2σ2
1

)]−1
, Y = exp

[
θ(0)

2

]
+ 1

3 exp
[
− 3θ(0)

2

]
. The constant Y is chosen so

that the condition U(0) = 0 is satisfied. The normalized electric field is given by:

E (Φ) = ±
√
−2U (Φ). (12)

For solitons of a small amplitude (|Φ̃| � 1), equation (11) has approximate analytical soliton solutions,
which is presented in [24, 32]. In our research we use numerical methods to solve equation (11) for
arbitrary amplitudes.

As a basis we take the plasma parameters presented in [32]: σi = 0.2, σd = 0.02, δ = δi/δe = 10. Figure 2
shows soliton profiles for different values of M. Reflected particles were not taken into account in warm
plasma models [31, 32]. However, reflected particles must be present in warm plasma. Let us determine
their properties using equation (2) for a probe particle, which takes the following form with the introduced
normalizations:

d2ξ

dτ 2
=

∂Φ (ξ)

∂ξ
− Ω

(
dξ

dτ
+ M

)
. (13)

Here Ω = νdn/ωd. Differential equation (13) can be integrated numerically (by Runge–Kutta method)
using the previously found soliton profile Φ(ξ) (see figure 2).

We set the initial particle position to ξ(0) = 25, which is sufficient to prevent the soliton action on the
particle at the initial moment of time. In the moving frame, particles hit the soliton from the right with an
average speed of (−M). Thus, the initial velocity of the particles will be set in the form (−M + Δ), where
Δ is an additive, associated with the velocity distribution of particles. The introduction of the parameter Δ
allows us to take into account the kinetic temperature of the dust component. Result of the integration of
equation (13) is presented in figure 3(a). Figure 3 shows dependences ξ(τ) for particles at different values of
Δ and Ω. The parameter M = 1.19 is close the critical value, in this case the soliton amplitude is close to
the maximum. For clarity, the result is shown in the wave frame (figure 3(a)) and in the fixed frame
(figure 3(b)). In the latter case, equation (13) takes the form [16]:

d2X

dτ 2
=

∂Φ (X)

∂X
− Ω

(
dX

dτ

)
. (14)

4



New J. Phys. 23 (2021) 093016 F M Trukhachev et al

Figure 2. Profiles of the electric field E = −∂Φ/∂ξ (dashed curves) and the electric potential Φ(ξ) for the DA soliton at
σi = 0.2, σd = 0.02, δ = 10 for different values of M.

Figure 3. The parameters of motion of dust particles ξ(τ ), X(τ ) obtained from the numerical integration of equations (13) and
(14) for moving (a) and fixed (b) frames, respectively. The parameters correspond to figure 2 at M = 1.19. The initial position of
all particles is X(0) = 25. Parameters Δ and Ω are different for different curves: curve 1—(Δ, Ω) = (0.25, 0); curve 2—(Δ, Ω)
= (0.48, 0); curve 3—(Δ, Ω) = (0, 0); curve 4—(Δ, Ω) = (−0.24, 0); curve 5—(Δ, Ω) = (0.96, 0.03). Insert plots show
dependences of velocities of reflected particles on the spatial coordinate (phase portraits).

Here we assume that ∂Φ
∂X = ∂Φ

∂ξ
. Presented graphs are superimposed on the position of the soliton in

space, the amplitude of which is shown by the contour plot. The dynamics of the wave–particle interaction
is clearly shown in the simulation [34].

2.1. Elastic particles scattering (Ω= 0)
Particles 1–4 in figure 3 (straight lines) correspond to the non-dissipative (conservative) case. Numbers 1, 2
correspond to reflected particles, while numbers 3, 4 describe transit ones. For particles 1–4, the
dependences X(τ) and ξ(τ) are described by straight lines everywhere except the vicinity of the soliton. Let
us introduce the notation for the normalized velocity of a dust particle: υd = dX/dτ and υ∗

d = dξ/dτ in the
fixed and wave frame, respectively. It is obvious that υ∗

d = υd − M. In the wave frame, velocity of the
particle before and after interaction with the soliton is the same |υ∗

d (−∞)| = |υ∗
d (∞)|. This follows from

the analysis of the inclination angles of curves 1–4 to the vertical axis. The nature of the reflection of
particles 1, 2 fully corresponds to the process of elastic reflection (scattering). The equality
−υ∗

d (−∞) = υ∗
d (−∞) for reflected particles 1–2 is also shown in the inset to figure 3(a) and section 1.2 of

[34]. This means that the velocities of reflected particles change sign from negative to positive, while
velocities of passing particles remain negative. The equality |υ∗

d (−∞)| = |υ∗
d (∞)| holds due to the

conservative nature of the electric field produced by the soliton. Indeed, in a wave frame, the soliton field is

stationary (dϕ/dt = 0). The energy conservation law gives Zeϕ+
md(υ∗d)2

2 = const., but the electric

5
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Figure 4. (a) Maxwell distribution functions for the dust fraction. The shaded areas correspond to particles that reflect by
near-critical solitons (Φ̃ ≈ Φ̃max). (b) Dependencies η(Φ̃). All parameters correspond to figure 2, except for the varied parameter
σd: curves 1—σd = 0.24; curves 2—σd = 0.02; curves 3—σd = 0.002.

potential of the soliton is equal to zero everywhere except its vicinity and therefore
md(υ∗d)2

2 = const.
everywhere except the vicinity of the soliton.

Let us note here an interesting analogy between the phenomenon under study and the phenomenon of
total internal reflection in optics. One can imagine that trajectories of particles are rays of light. In this case
the potential of an electric field, produced by a soliton corresponds to the refractive index of a medium.
Although this analogy is formal, perhaps it will help to formalize other properties of the process under
study in the future.

In the fixed frame, the initial velocities of particles are close to zero. The deviation from zero is set by the
Δ parameter and is determined by the Maxwell distribution. For subcritical solitons, most of particles are
transit (see curves 3, 4 in figure 3). Reflection starts at Δ �Δcr = 0.25 for the considered set of soliton
parameters. Only particles of the Maxwellian tail (curves 1, 2 in figure 3) are reflected by the soliton. The
inset in figure 3(b) shows that initial speed υd(0) = Δ corresponds to final speed υd (∞) = 2M −Δ. For
small values of Δ (i.e. Δ � M) we have υd (∞) ≈ 2M (see also section 1.1 in [34]).

Let us estimate the number of reflected particles in the case of subcritical soliton. We can use

η (Δ) =
∫ Vsol
Δ·Cd

f (v) dv formula, where f (v) =
√

md
2πTd

exp
(
−mv2

2Td

)
is the Maxwell–Boltzmann distribution

function. By applying normalizations we get:

η (Δ) =

∫ M

Δ

f (υd) dυd, (15)

where f (υd) = 1√
2πσd

exp
(
− υ2

d
2σd

)
. Equation (15) is written in the fixed frame for convenience. The velocity

of the soliton is chosen as the upper limit of the integral, since particles with higher speeds do not reflect by
the front of the soliton. Note that for σd � 1 the number of such particles is negligible, therefore, we can
assume +∞ as the upper limit of integral (15). We have ηcr = η(Δcr) = 0.037 at Δ = Δcr = 0.25, where
Δcr is the critical value of Δ for chosen parameters and M = 1.19, Ω = 0. Particles are scattered if Δ � Δcr.
Thus, approximately 4% of particles experience the elastic reflection. Presence of such particles leads to the
formation of multi-streaming flow. Particles in this case are accelerated by the energy of the soliton. The
MHD models used in [31, 32] neglect the influence of such particles.

Figure 4 shows dependences f (υd) and η(Φ̃) for different values of σd. All other parameters correspond
to figure 2. As it is shown in figure 4(a), with σd increase, the plot of f (υd) broadens, and one can expect an
increase in the fraction of reflected particles. However, as it is shown in [31, 32], an increase in σd leads to a
decrease in the soliton amplitude Φ̃. Shaded areas in figure 4(a) correspond to reflected particles for solitons
with large amplitudes close to the critical ones (Φ̃ ≈ Φ̃max). The critical amplitudes Φ̃max for different values
of the parameter σd are shown in figure 4(b). It can be seen from figure 4(b) that the fraction of reflected
particles η increases along with soliton amplitude Φ̃ in a wide range of values of σd. In all considered cases,
the maximum value of η does not exceed 5%.

The situation changes when the amplitude is supercritical [16]. For supercritical solitons, there are a lot
of reflected particles (Δcr ∼ 0), which leads to its breaking. As shown above, the velocity of reflected
particles in the fixed frame is equal to υd (∞) = 2M −Δ. For Δ = 0, we get υd (∞) = 2M. This means
that in the case of elastic reflection of particles by a soliton (or a nonlinear wave) of supercritical amplitude,

6
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Figure 5. Time dependences of coordinates ξ(τ ) (a) and velocities υ∗
d = dξ/dτ (b) for dust particles in the wave frame at

different values of Ω: curve 1—Ω= 0.01; curve 2—Ω= 0.04; curve 3—Ω= 0.07. Curve 4 corresponds to the profile of the
soliton Φ(ξ), the plot of which is aligned with the plot of ξ(τ ). Plasma parameters correspond to figure 2 at M = 1:19.
Equilibrium points ξ01, ξ02, ξ03 are marked on the soliton profile. The insets show dependences ν(Ω), ω(Ω)(left) and spectra
(right). The dependence ν(Ω) is plotted for different values of M. The solid curves are obtained analytically, while the exact
numerical results are displayed by triangles.

the velocity of particles is equal to twice the soliton velocity. This result was obtained theoretically in [16]
and some experiments [19] (see section 4). It is important to mention that if the soliton is supercritical,
then the velocity of the reflected particles does not depend on either the soliton amplitude or the shape of
its profile. This pattern is a consequence of the electrostatic nature of the soliton field.

2.2. Inelastic scattering (Ω �= 0)
In the non-dissipative case discussed above, elastically scattered particles quickly leave the vicinity of the
soliton. In the presence of dissipation, the behavior of reflected particles changes significantly (we do not
consider transit particles here). As can be seen from figure 3(a) and simulation [34] (section 2.2), in the
wave frame the reflection process of particle ‘5’ appears as damped oscillation. We can observe that reflected
particles tend to ‘stick’ to the front of the soliton. This process is similar to the inelastic scattering, well
known from mechanics. The steady-state velocity of such particles tends to the velocity of the soliton in the
fixed frame [14–16, 34] (section 2.1) or to zero in the wave frame [34] (section 2.2). In the experimental
work [15], this process was called no-trough trapping. It is caused by dissipative forces [15, 16]. It was shown
in [32] that the negative potential of DA solitons is the potential well for positive ions, it is also the potential
hump for negatively charged dust particles. Thus, the mechanism of trapping ions and dust particles is
fundamentally different. Let us consider the trapping process in the wave frame. The friction force is given
by Fdis = Ω

(
dX
dτ + M

)
. In the undisturbed state, particles drift from right to left with velocity dX

dτ = −M, so
Fdis = 0. Interaction with the soliton causes fluctuations of the particle velocity. In this case, a non-zero
friction force arises Fdis �= 0, which tends to restore the initial value of the particle velocity. Thus, the soliton
field tends to reflect the particle incident from the right, but the friction force accelerates the particle in the
initial direction of motion (from right to left). In other words, the friction force tends to pull the particle
against the soliton, which, in turn, repulses it. As a result, oscillations arise. Hence, the motion of the
potential hump, and non-zero friction force are necessary conditions for particles trapping. The trapping
mechanism is theoretically described in [15, 16] using different approaches. Oscillations that occur during
the trapping process were first mentioned in [16] within the study of soliton breaking processes.

3. A new oscillatory process

3.1. Numerical modeling
Let us consider the main issue of our research, namely, the analysis of the properties of the new oscillatory
process in plasma. Figure 5 shows dependences ξ(τ) and υ∗

d(τ) for different values of Ω. Figure 5
demonstrates that the oscillation amplitude decreases along with Ω. We denote oscillation frequency as ν.
Dependence ν (Ω) is presented in the inset to figure 5(a). As Ω grows, the oscillation frequency ν first
increases, then reaches a plateau, and then decreases. It is worth noting (not shown in the figure) that ν
weakly depends on other parameters such as σi, σd, δ and practically does not depend on Δ.

The oscillation spectra are shown in the inset plot to figure 5(b). The spectra clearly show the presence
of 2nd and 3rd harmonics, which indicates nonlinearity of such oscillations. As the oscillations damp out,

7



New J. Phys. 23 (2021) 093016 F M Trukhachev et al

Figure 6. Relationship between oscillations parameters and soliton characteristics for different values of Ω. Parameters with
subscripts ‘01’, ‘02’, ‘03’ correspond to the values Ω= 0.01, Ω= 0.04, Ω= 0.07. (a),(c) Profiles of the soliton Φ(ξ) and E(ξ) at
σi = 0.2, σd = 0.02, δ = 10, M = 1.19; (b) the phase portrait of a soliton, i.e. dependence E(Φ); (d) dependence E′(Φ), where
E′ = dE/dξ.

the process linearizes, so that it can be described in a linear approximation (see section 3.2). The asymptotic
positions of particles at τ →∞ are denoted as ξ01, ξ02, ξ03 for Ω = 0.01, 0.04, and 0.07, respectively. These
are equilibrium points for oscillating particles. As can be seen from figure 5(a), points ξ01 –ξ03 are placed
inside the soliton at its leading front, and their position depends on Ω. In the wave frame, after relaxation of
oscillations, the particle stops at the equilibrium point. In this case, we have ξ = ξ0, dξ/dτ = 0, d2ξ/dτ 2 =

0. Then, from equation (13), we can obtain the equilibrium point condition:

− ∂Φ

∂ξ
≡ E = −ΩM. (16)

In the general case (for particles of arbitrary sign), equality (16) can be written as |E| = ΩM. For the
stationary confinement of trapped particles, equality (16) is sufficient, but for particle capture, electric field
E must be greater than ΩM (|E| > ΩM), because in this case it is necessary to reduce the initial velocity of
the incident particle. On the other hand, if the condition Ẽ < ΩM is satisfied (where Ẽ is the amplitude of
the soliton electric field), the wave cannot retain dust particles. In this case, trapping is not possible. The
soliton profiles and the E(Φ), E′(Φ) plots are shown in figure 6, where E′ = dE/dξ. Equilibrium points ξ0

are marked on the plots. Figure 6 shows that all points ξ0 are placed in the region of a positive gradient of
the electric field. In this case, condition (16) is also satisfied for the points ξ′0. However, such equilibrium is
unstable, indeed, an infinitesimal fluctuation can shift a particle to the left where |E| < ΩM. The condition
for the field gradient then can be written as follows:

∂E

∂ξ
> 0. (17)

Now let us consider some properties of equilibrium points. Analytical expression for ∂E
∂ξ and E(Φ) are

given by (9) and (12). The electric field corresponding to points ξ = ξ0 is:

E0 = −ΩM. (18)
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Hereinafter, we consider the negative branch of function (12), which describes the leading edge of the
soliton. Corresponding potential Φ0 can be derived from equation (12):

E0 +
√
−2U (Φ0) = 0. (19)

We introduce the notation Φ0 and Φ∗
0 for the roots of equation (19). These roots are marked with ‘•’

and ‘◦’ symbols in the phase portrait shown in figure 6(b). Roots Φ0, which are closer to zero, satisfies
condition (17). Equation (19) is an implicit function Φ(E) so we can obtain Φ0 from this equation by using
graphical or numerical methods. Knowing E0 and Φ0, we can calculate positions ξ0, since functions E(ξ)
and Φ(ξ) are known (figure 6(a)). It is obvious that with increasing of Ω, the value of ξ0 decreases
(ξ01 > ξ02 > ξ03). This means that equilibrium point ξ0 moves to the center of the soliton as the value of
the dissipation term is increase. Minimal possible value ξ0 = ξ0cr corresponds to the amplitude Ẽ of the
soliton electric field as shown in figures 6(a) and (c). For ξ0 < ξ0cr, condition (17) is not satisfied.
Therefore, for any given soliton, there is a limiting value of Ωcr, such that for Ω > Ωcr, the no-trough
trapping is not possible. For the case shown in figure 6, |Ẽ| = −0.157 and, therefore, Ωcr =

Ẽ
M = 0.132 in

accordance with equation (18). Electric field amplitude Ẽ can be found from (12) as an extremum of
function Ẽ =

√
−2U (Φext), where Φext is a root of the equation ∂E

∂Φ = − ∂
∂Φ

√
−2U (Φ) = 0. The

minus sign corresponds to the leading front of the soliton, where the electric field is negative. As a result we
can write:

1√
−2U (Φ)

∂

∂Φ
U (Φ) = 0.

Taking into account expression (12), as well as the fact that ∂
∂ΦU (Φ) = δe exp (σiΦ) − δi exp (−Φ)

+ Nd (Φ) finally gives us:
δe exp (σiΦ) − δi exp (−Φ) + Nd (Φ)

E(Φ)
= 0.

To satisfy this equality, it is enough that the numerator is equal to zero, so the final equation for Φext

takes the following form:

δe exp (σiΦext) − δi exp (−Φext) + Nd (Φext) = 0. (20)

The value of Φext can be found graphically or numerically, since equation (20) is transcendental. The
positions of points E0, ξ0, Φ0, Ẽ are shown in figures 6(a)–(c). Figure 6(d) shows the function E

′
(Φ) and its

root Φext, according to equations (9) and (20). As mentioned above, the larger Ω, the closer ξ0 is to the
center of the soliton, and the smaller the possible amplitude of oscillations (figure 5), since the trapped
particles should not fall into the rear edge of the soliton. Indeed, the electric field at the rear edge of the
soliton becomes positive (see figures 2 and 6(a)), now it pushes the particle to the left so the particle
becomes a transit one. We can conclude that the rear edge of the soliton does not affect the scattering or
trapping process.

A more detailed analysis shows that the point of maximum displacement of trapped particles from their
equilibrium positions is not at the center of the soliton, but at the point ξ = ξ′0 (see section 2.3 in [34]).
Thus, the maximum amplitude of the negative half-period of oscillations is ξ̃− = ξ0 − ξ′0. Indeed, in the
position of maximum deviation from equilibrium, the particle stops in order to reverse direction. At this
point υ∗

d = 0, therefore, the acceleration of the particle is easy to find from Newton’s second law
a
(
ξ′0

)
= −E0 − ΩM = 0. Trapping is possible if the inequality a > 0 is satisfied (i.e. the particle moves

towards the equilibrium point). This condition can be satisfied only to the right of the point ξ′0 (at ξ > ξ′0).
Thus, the roots ξ′0 can be used, firstly, to calculate the maximum amplitude of oscillations, secondly, to
choose the initial conditions for equation (13).

The applied significance of formulas (16)–(20) includes the possibility of estimating the electric field
magnitude of nonlinear waves if the no-trough trapping process was registered, and the value of Ω is
known. On the other hand, if parameters of a soliton are given, then Ω can be calculated. Formulas
(16)–(20) also allow one to estimate parametric regions in which the no-trough trapping of particles and
the oscillatory process occurs. This is a subject for future works.

3.2. A new oscillatory process. Linear approximation
As shown in figure 5, as the oscillation amplitude decreases, the process linearization is observed. In this
section we discuss a linear approximation for the oscillatory process.

Let us consider the wave frame case. A particle position ξ(τ) can be expressed as ξ = ξ̃ exp
[i(ω0 − iγ)τ], where ξ̃ is the initial amplitude, ω0 is natural frequency of the oscillations, γ is decrement.
We assume that oscillations occur around equilibrium position ξ0 with a small amplitude. The Taylor series

9
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expansion of the electric field function gives:

E (ξ) = E (ξ0) + E′ (ξ0) (ξ − ξ0)
or

E (ξ) = E′ (ξ0) ξ + A
, (21)

where E (ξ0) = E0, E′ (ξ0) = E′
0. The constant A is given by expression A = E0 − E′

0ξ0. It is obvious that
E′

0 = E′ (Φ0). In turn, the dependence E′ (Φ) is described explicitly by equation (9) and is displayed in
figure 6(d). As shown above, the value of Φ0 can be determined from equation (19) numerically or
graphically. It is easy to see that expression (21) describes the tangents to the electric field profile at ξ = ξ0,
as it is shown in figure 6(b). Now, taking into account that dΦ

dξ = −E, we substitute equation (21) in (13):

d2ξ

dτ 2
= −Ω

∂ξ

∂τ
− E′

0ξ + B, (22)

where B = −ΩM − A, taking into account formula (18) we have B = E′
0ξ0. Equation (22) describes a linear

damped harmonic oscillator. For the weak dissipation case, if inequality Ω < 2
√

E′
0 holds, the solution of

equation (22) is given by the following formula:

ξ(τ) = ξ̃ exp(−γτ) sin [ωτ + ϕ] + ξ0

or

ξ(τ) = ξ̃ exp [i (ω + iγ) τ] + ξ0,

(23)

where

ω =

√
E′

0 −
Ω2

4
, γ =

Ω

2
. (24)

From (24) follows that the frequency and decrement depend only on Ω and E′
0. The first parameter is

given, the second can be obtained from equations (9), (12) and (18) as follows. From equation (18) we get
E0. Next, we substitute the obtained value into equation (12) and find Φ0. In accordance with condition
(17), the root closest to zero should be used (see figure 6(b)). Finally, from equation (9) we determine
E′

0 = E′(Φ0). It is important to note that to calculate E′
0 (and hence ω) there is no need to obtain the

soliton profile function, which requires numerical computations. The soliton profile function is necessary
only in order to obtain ξ0.

The weak side in the linear analysis of new oscillations is equation (12), the explicit solutions of which
are not known. However, as one can see from figure 6(b), the roots of this equation placed in the area close
to a straight line. Therefore, to get an approximate analytical solutions, one can use the Taylor series
expansion for the right-hand side of equation (12).

E (Φ) =
√

2

√
δ + σi

δ − 1
− 1

M2 − 3σd
Φ (25)

The approximation (25) is shown as a thin straight line in figure 6(b). As one can see, the linear
approximation is quite accurate for the roots ξ01 –ξ03. Now, the oscillation frequency can be expressed
explicitly:

ω (Φ0, M, δ,σi,σd,Ω) =
√
δe exp (σiΦ0) − δi exp (−Φ0) + Nd (Φ0, M, δ,σi,σd) − Ω2/4

with

Φ0 = − ΩM√
δ+σi
δ−1 − 1

M2−3σd

. (26)

Here Nd (Φ0, M, δ,σi,σd) is determined by equation (10). The dependences ν (Ω), ω (Ω) (where
ν ≡ ω/2π), calculated by formula (26) are shown by solid curves in the inset to figure 5(a) for different
values of M (i.e. for different soliton amplitudes). Also, for comparison, the exact dependences ν (Ω), are
presented, calculated using the oscillation spectra (symbols ‘�’ and ‘Δ’ for M = 1.19 and M = 1.05,
respectively). As one can see, the numerical result is in a good agreement with the approximate analytical
approach, especially for small values of Ω. Even more accurate seems the quadratic approximation of the
function E(Φ), which can be expressed by rather complicated formulas. Detailed analysis of the quadratic
approximation is beyond the scope of this work.
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As can be seen from the inset to figure 5(a), the oscillation frequency ν first increases with increasing Ω,
then reaches a plateau, and then decreases. This behavior of the function ν(Ω) is explained as follows.

Equation (24) implies ν = ω
2π ≈

√
E′0

2π . Thus, the oscillation frequency ν depends on the derivative dE
dξ |ξ=ξ0,

i.e. on the angle of inclination of the tangent to the graph E(ξ) (see figures 6(a) and (c)). With the growth
of Ω, the equilibrium point moves from right to left (E01 → E02 → E03 →−Ẽ). In this case, the angle of
inclination of the tangent increases at E01 → E02 → E03. However, as we approach point Ẽ (E0 → Ẽ), the tilt
angle will pass its maximum and begin to decrease, reaching zero at point Ẽ.

The main characteristic of an oscillatory process is frequency. As can be seen from the inset to
figure 5(a), the frequencies of the oscillations under consideration are less than ωd. Moreover, ω � ωd at
small values of the parameter Ω. Thus, the new oscillatory process is low-frequency.

The process under study is oscillatory, since it describes the motion of separate (independent) particles.
Analyzing a coupled ensemble of such particles, one should expect the appearance of wave properties, we
leave it as a topic for future works.

4. Comparison with experiments and discussion

In experimental work [19] the breaking process of a nonlinear supercritical electron wave in a collisionless
plasma with microwave excitation was studied. The wave intensity was 104 times higher than the breaking
threshold intensity. Generation of accelerated electrons was observed, their velocity was twice the phase
velocity of the wave. An electron plasma wave is a wave packet and it is not an exact analogue to acoustic
solitons. Electron motion in the electric field of such wave is oscillatory. Nevertheless, for larger amplitudes
it was found that multi-streaming flow occurs in on the first oscillation [17]. For strongly nonlinear
electron waves, the steepness of the envelope is large, hence the amplitude of the plasma oscillations
increases rapidly (see figure 1 from [19]). Therefore, in the first approximation, the influence of previous
oscillations can be neglected when calculating the parameters of reflected particles. Thus, in our opinion,
experiment [19] can be considered an example of elastic scattering of charged particles by a wave in the
non-dissipative environment.

Let us consider further examples of inelastic scattering of particles by a soliton-like potential. In [16], the
breaking of the self-excited DA soliton of supercritical amplitude in a collisional dusty plasma of a glow
discharge was studied. Taking into account our normalizations, the main parameters of the plasma are
δ = 3, σi = 0.17, M = 1.2, Ω = 0.07. The acceleration of charged dust particles by the leading edge of a
supercritical soliton was observed. It was shown that the speed of the accelerated particles is approximately
equal to the speed of the soliton, which corresponds to inelastic scattering. In [16], for the first time, the
considered oscillations of particles were discovered. Only the first half-period of oscillations was observed,
the duration of which was well described by the constructed theoretical model. Our model makes it possible
to estimate the wave electric field in the region where the trapped particles are presented (z �4 mm in
figure 2 from [16]). Equation (18) gives E0 ≈ 6 V cm−1 for the parameters and normalization given in [16].

The evolution of plane DA waves and the no-trough trapping of dust particles in collisional rf dusty
plasma were studied in [14, 15]. The discharge parameters correspond in order of magnitude to those from
[16]. The wave evolution consisted of the following stages:

(a) Excitation in the upper part of the cloud;

(b) Linear gain;

(c) Nonlinear steeping;

(d) Breaking, which occurs along with the trapping of particles and the kinetic heating of the dust fraction;

(e) Stationary propagation of the nonlinear wave with trapped particles;

(f) Decay of the wave at the bottom of the dust cloud.

The observed wave at the end of the third stage of evolution, before breaking, acquired a strongly
nonlinear soliton-like profile (figure 1(c) in [14], bold curve, at z = 0). The wave reached its supercritical
amplitude at the breaking point, which led to the acceleration of particles to velocity approximately equal to
the velocity of the wave, and the subsequent trapping of dust particles. It is interesting to note that after the
breaking the wave did not decay, but continued to move in the same direction with the same velocity. After
breaking, a change in the amplitude and width of the dust density profiles was observed. The same
experiment was considered in work [15]. The kinetic temperature of the dust component after breaking was
estimated, which gave the value Td = 60 eV or σd = 0.24. Before the breaking, Td was much smaller. This
difference in temperature can explain the broadening of the wave profile upon passing the critical point.
Particles trapped during the breaking continued to move along with the wave, forming a rather extended
cloud, localized in the region of the leading edge of the wave (see figure 4 from [15]). The length of this
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cloud is apparently determined by the Coulomb repulsion and various fluctuations. Figure 4 from [15]
shows the ‘ragged’ dust density profile of the wave that contains trapped particles. This fact may indicate a
possible phase grouping of trapped particles and a possible dispersion of the new wave mode. In this
respect, the experiment presented in [35] seems to be interesting. This paper describes secondary DA waves
observed in the vicinity of primary large amplitude nonlinear self-exited DA waves. The experiment was
carried out in a dc glow discharge plasma in argon at a pressure of 24 Pa. According to the authors of [35],
the cause of secondary waves is streaming instability. Unfortunately, data on the motion of individual
particles were not presented in [35]. Therefore, at this stage, we cannot perform a detailed analysis of the
experiment [35]. However, such an analysis is possible in the future, after generalizing our theory to an
ensemble of coupled charged particles.

The new plasma oscillatory process can play an important role in various parametric resonances and
manifest itself in broadening of the pump wave spectrum. Waves containing trapped particles can be
periodic [14, 15], which increases the efficiency of possible parametric processes. On the other hand, one
can parametrically ‘heat up’ trapped particles by choosing the frequency of the pump. The oscillation
phases of different particles in our model are random. In self-consistent models, phase grouping is possible.
On the other hand, coherent oscillatory motion of particles can be realized with parametric excitation of
oscillations. Indeed, in this case, the driving force in the first approximation will be harmonic for all
trapped particles. Thus, one should expect the in-phase motion of all such particles.

Experiments [14, 15] demonstrate the stability of waves containing ‘no-trough’ trapped particles, which
confirms the practical significance of our findings. Obtained results can be easily generalized to ion- and
electron-acoustic models, as well as to more complex dust-acoustic models, including non-thermal
electrons (ions), self-consistent dust charge, etc. An important condition for the existence of such modes is
the presence of dissipation. It is worth mentioning that the presence of dissipation is a necessary condition
for the existence of another type of instability, called resistive instabilities [36].

5. Conclusions

The process of reflection (scattering) of charged particles by the leading edge of a DA soliton is described
theoretically. It is shown that the scattering is elastic in the collisionless (conservative) case and inelastic in
the presence of dissipation. In the first case, the velocity of reflected particles is close to twice the wave
velocity, which has been observed in experiments [19]. In the second case, the velocity of reflected particles
is approximately equal to the velocity of the wave; the particles seem to ‘stick’ to the leading edge of the
soliton or a nonlinear wave. This type of scattering was observed in experiments [14–16]. In the second
case, the motion of charged particles can be oscillatory. The analysis of these oscillations is carried out.
Spectra, decrements and other parameters are calculated. In particular, it is found that the oscillatory
process is low-frequency: ω � ωd. The applied significance of the results obtained is briefly considered.
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