ОПТИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПЛЕНОК ТИТАНАТА БАРИЯ С ЭРБИЕМ

А. В. ШУЛЬГА¹, Е. А. ЧУДАКОВ², Н. И. СТАСЬКОВ² ¹Белорусско-Российский университет ²Могилевский государственный университет имени А. А. Кулешова Могилев, Беларусь

В последнее время большое внимание уделяется золь-гель-технологии получения пленок из материалов перовскитной структуры и исследованию их оптических свойств. В данной работе представлены результаты определения ширины запрещенной зоны E_g , энергии Урбаха E_u , коэффициента поглощения α , показателей преломления n и экстинкции k пленок чистого титаната бария ВаТіО₃ и пленок ВаТіО₃, легированных эрбием ВаТіО₃;Ег. Пленки наносились при одинаковых условиях на миллиметровую подложку из плавленого кварца КУ1, прозрачного в УФ и видимой области спектра. Спектры отражения и пропускания (SRT) двух образцов измеряли на спектрометре PHOTON RT (EssentOptics). Углы ψ и Δ измеряли на эллипсометре UVISEL2 (HORIBA, Франция). Оптические характеристики пленок рассчитаны по параметрам дисперсионной функции новых аморфных материалов (NAM) [1]:

$$n_{f}(E) = n_{\infty} + \left[B\left(E - E_{j}\right) + C\right] \left[\left(E - E_{j}\right)^{2} + \Gamma_{j}^{2}\right]^{-1};$$

$$k_{f}(E) = \begin{cases} f_{j}\left(E - E_{g}\right)^{2} \left[\left(E - E_{j}\right)^{2} + \Gamma_{j}^{2}\right]^{-1}; & E > E_{g} \\ 0 & E < E_{g}, \end{cases}$$
(1)

где $B = f_j \Gamma_j^{-1} \left[\Gamma_j^2 - (E_j - E_g)^2 \right]; C = 2f_j \Gamma_j (E_j - E_g);$ n_{∞} – показатель преломления, соответствующий нулевой энергии фотона; E_j – энергия фотона, на которую приходится максимум полосы поглощения; f_j – упругая постоянная осциллятора; Γ_j – полуширина полосы поглощения; E_g – энергия фотона, на которую приходится край полосы поглощения.

Параметры функции NAM и толщины пленок приведены в табл. 1. Ширину запрещенной зоны $E_{g\alpha}$ исследуемых пленок определяли графически (рис.1) на основании функции Тауца с коэффициентом поглощения α , см⁻¹ (λ , мм).

$$(\alpha E)^m = A_0 (E - E_{ga}); \, \alpha = 4\pi k (\lambda 10^{-7})^{-1}.$$
⁽²⁾

Линейный участок $(\alpha E)^m$ был достигнут в двух случаях: m = 0,5 (*a*) и m = 2 (б) (см. табл. 1). Оказалось, что наибольшая разность энергий ΔE линейной функции $(\alpha E)^m$ соответствует m = 0,5 (см. рис. 1). Это указывает на

345

преобладание непрямых межзонных переходов над прямыми межзонными переходами электронов. Можно предположить, что надмолекулярная структура пленок является аморфно-кристаллической с малым содержанием кристаллической части. Для всех пленок $E_g < E_{g\alpha}$. Разность $E_u = (E_{g\alpha} - E_g)$ является энергие Урбаха. Ее величина указывает на наличие дефектов в структуре пленок. Энергия E_u при легировании пленок ВаТіО₃ уменьшается от 0,24 до 0,2 эВ.

sample	n_{∞}	E_g , эВ	f_j	<i>Е</i> _{<i>j</i>} , эВ	<i>Г</i> _{<i>j</i>} , эВ	d_f		E_{ga} , э \mathbf{B}	n
BaTiO ₃	$1,854 \pm$	3,614 ±	$0,188 \pm$	$4,669 \pm$	$0,797 \pm$	96,2 \pm	a	$(3,85 \pm 0,01)$	1,932
	$\pm 0,002$	$\pm 0,005$	$\pm 0,001$	$\pm 0,004$	$\pm 0,003$	± 0.1	б	$(4, 49 \pm 0, 01)$	
BaTiO ₃ ;	$1,757 \pm$	3,711 ±	$0,255 \pm$	$4,802 \pm$	$1,059 \pm$	35,9±	а	$(3,91 \pm 0,01)$	1,826
Er	$\pm 0,004$	$\pm 0,3009$	$\pm 0,004$	$\pm 0,\!01$	\pm 0,008	$\pm 0,1$	б	$(4,73 \pm 0,01)$	

Табл. 1. Оптические характеристики и толщины пленок

Рис. 1. Зависимость функции Тауца от энергии фотонов

Пленки BaTiO₃; Er характеризуются большей шириной запрещенной зоны и меньшими показателями преломления, чем соответствующие характеристики пленок BaTiO₃.

Работа выполнена в рамках ГПНИ РБ 1.15 «Фотоника и электроника для инноваций».

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. Horiba UVISEL PLUS Spectroscopic Ellipsometer [Electronic resource] // HORIBA. – Mode of access: www.horiba.com/scientifi. – Date of access: 22.01.2022.