ПРИБОРОСТРОЕНИЕ

УДК 620.179-534.1

М. В. Асадчая, А. Р. Баев, О. С. Сергеева, А. Л. Майоров

ВЛИЯНИЕ ПАРАМЕТРОВ ТЕХНОЛОГИЧЕСКОГО ВЫСТУПА НА ФОРМИРОВАНИЕ АКУСТИЧЕСКОГО ПОЛЯ ПРЕОБРАЗОВАТЕЛЯ. ПОВЕРХНОСТНЫХ ВОЛН

UDC 620.179-534.1

M. V. Asadchaya, A. R. Baev, O. S. Sergeeva, A. L. Mayorov

IMPACT OF THE TECHNOLOGICAL LEDGE PARAMETERS ON THE ACOUSTIC FIELD FORMATION OF THE CONVERTER OF SUPERFICIAL WAVES

Аннотация

Представлены экспериментальные данные исследования формирования в образцах с различным углом выступа $\gamma = 0...135^{\circ}$ полей поперечной и продольной мод, первичным источником которых является преобразователь волны Рэлея, в частотном диапазоне 1...3 МГц.

Получены данные по коэффициентам прохождения поверхностных акустических волн (ПАВ) через область сопряжения контактной поверхности образца с внутренней гранью выступа и преобразования ПАВ в головную волну, являющуюся источником одной из составляющих поля поперечной моды.

Исследовано влияние высоты выступа h на прохождение через него трансформированного акустического импульса ПАВ и показана возможность обнаружения поверхностных дефектов, расположенных с обратной стороны выступа.

Ключевые слова:

волна Рэлея, краевая волна, сопутствующая волна, головная волна, выступ, трансформация мод, рассеяние, граничные условия, суперпозиция полей.

Abstract

Experimental data of the research on fields formation of the transverse and longitudinal modes, which primary source is a Rayleigh wave converter, in the frequency range of 1...3 MHz, in models with a various angle of a ledge $\gamma = 0...135^{\circ}$ are presented.

Data on coefficients of the passage of superficial acoustic waves (SAW) through the area of interface of a contact surface of a model with an internal side of a ledge and the transformation of SAW to the head wave which is a source of one of the components of a traverse mode field are obtained.

The influence of a ledge height h on passing the transformed acoustic impulse of the superficial acoustic waves through it has been investigated and the possibility of detecting superficial defects located on a reverse side of the ledge is shown.

Key words:

rayleigh wave, edge wave, accompanying wave, head wave, ledge, transformation of modes, dispersion, boundary conditions, superposition of fields.

Введение

Несмотря на имеющийся обширный материал теоретических (преимущественно) и экспериментальных исследований, например [1-5], вопросы трансформации поверхностных волн и их рассеяния на выступах различной конфигурации и размеров недостаточно изучены. Наиболее близкие по теме настоящих исследований результаты получены в [6], где первичным источнислужил пьезопреобразователь ком (ПЭП) подповерхностных поперечных волн с углом призмы $\beta = \arcsin(C_1/C_T)$, где C_1 – скорость продольной волны в призме ПЭП; С_Т – скорость поперечной волны, а ПАВ играла роль лишь сопутствующей моды. При этом на особенности трансформации ее в объемные моды и рассеяния в области сопряжения контактной поверхности (ОСП) с внутренней гранью выступа не обращалось должного внимания. При проведении акустических измерений использовались образцы с прямоугольными выступами, поверхность приема которых была плоской, что давало лишь качественную картину исследуемого поля в окрестности зоны α ~ 0 и значительно искаженную – вне ее. Эти недостатки были устранены в работе, где образцы с выступом выполнены с цилиндрической поверхностью приема волн.

Используемые на практике изделия, узлы и соединения могут иметь технологические выступы с различным значением угла выступа γ и высоты *h*, а потенциально опасные дефекты располагаться не только в объеме выступа, но и за ним – в недоступной зоне. С другой стороны, изучаемые объекты – это волноводы сложной геометрии, и знание особенностей возбуждения и прохождения через них различных упругих мод представляет интерес для создания устройств для приема и излучения упругих мод. Поэтому дальнейшее проведение исследований механизма трансформации и полей рассеяния объемных мод, первичным источником которых является ПЭП волны Рэлея, актуально не только для ультразвукового контроля указанных объектов на наличие дефектов, но и для других целей в технике ультразвуковых измерений.

Был выбран экспериментальный путь исследований, т. к. теоретический подход для описания рассматриваемых объектов ограничен ввиду сложности постановки граничных условий и др., а также продолжено изучение особенностей формирования поля поперечных (преимущественно) $A_T(\alpha)$ и продольных $A_L(\alpha)$ волн в стальных образцах. Исследуются зависимости параметров поля от угла выступа γ и его высоты *h*, определяются коэффициенты прохождения и трансформации упругих мод на ОСП выступа.

Как будет показано ниже, акустическое поле $A_T(\alpha)$ может быть представлено в виде суперпозиции полей трех источников: A_{TS} – поле сопутствующей поперечной волны, излучаемой преобразователем одновременно с волной Рэлея; A_{TE} – поле краевой поперечной волны, трансформированной из ПАВ на ОСП; A_T^* – поле отходящей под углом 33° к нормали внутренней грани выступа поперечной волны, генерируемой краевой головной волной. На основе экспериментальных данных и проведенного их анализа рассматриваются некоторые пути использования полученных результатов в ультразвуковом контроле и технике ультразвуковых измерений.

Результаты экспериментальных исследований

Методика исследований. В качестве источника и приемника электрических сигналов используются блоки стандартного дефектоскопа. Анализ параметров недетектированного сигнала осуществляется на базе компьютера и с применением прибора И1-8. В качестве излучателей используются наклонные

ПЭП с углом призмы $\beta_{\Pi AB} = 64^{\circ}$ и диаметром пьезоэлемента 2a = 12 мм, рабочие частоты f = 1...3 МГц. Колебания, тангенциальные поверхности объекта, принимаются ЭМА-преобразователем с шириной намотки провода 0,8 мм и нормальным полем, создаваемым постоянным самарий-кобальтовым магнитом; нормальные поверхности объекта колебания – прямым ПЭП с поперечным размером пьезоэлемента 1 мм и магнитным прижимом. При исследовании отношения амплитуды ПАВ к амплитуде сопутствующей поперечной волны A_{ПАВ}/A_{TS} в качестве излучателя используется ПЭП с переменным углом призмы β и постоянной точкой выхода акустического луча. Объектом исследования являются: стальные цилиндрические образцы радиусом $R_{\rm O} = 54$ мм с различной величиной вырезанного углового сектора у, варьируемого в диапазоне $\gamma = 35...135^{\circ}$; образцы в виде параллелепипеда с варьируемой высотой выступа h = 1...5 мм.

Основные результаты исследований представлены на рис. 1...5, иллюстрирующих характер изменения поля рассеяния объемных мод и коэффициентов прохождения и трансформации ПАВ в продольные и поперечные моды в зависимости от угла выступа, его высоты и частоты волны.

Влияние угла выступа. Рассмотрим особенности формирования результирующих полей $A_T(\alpha)$ и $A_L(\alpha)$ в объеме образцов с различным углом выступа. В отсутствие радиусного перехода $(R_{\lambda} = R/\lambda_{\Pi AB} = 0,$ где R – радиус ОСП; λ_{ПАВ} – длина ПАВ) можно считать, что излучение краевых волн производится источником (мнимым) с амплитудными и фазовыми параметрами, распределенными в объеме радиусом $\sim \lambda_{\Pi AB}$, и центром в координате x = z = 0. Отличие рассматриваемого источника упругих волн от известных (малоапертурных) [8] заключается в своеобразии граничных условий, обуславливающих механизм трансформации мод и асимметрию формируемых полей.

Прежде всего, обратим внимание на то, что зависимости $A_T(\alpha)$ имеют в окрестности $\alpha \sim 0^\circ$ максимум (см. рис. 1 и 2), и с уменьшением γ наблюдается тенденция сдвига его (на ~5...7°) в область положительных значений α , что детализировано на рис. 1, б. При этом изменение абсолютной амплитуды максимума поля на фиксированной рабочей частоте не превосходит 2...3 дБ.

Независимо от частоты волны и угла выступа зависимости $A_T(\alpha)$ имеют ярко выраженный локальный минимум, достигающий для $\gamma \leq 90^\circ$ десятки децибел в окрестности характерного угла α_{\min} . Для $\gamma = 90^\circ$ этот экстремум возникает в результате взаимодействия рассеянной на выступе краевой T_E -моды и отходящей под углом 33° к нормали поверхности передней грани выступа поперечной T^* -моды. Последняя генерируется краевой головной волной, трансформированной из ПАВ.

Экспериментально установлено (см. рис. 1), что α_{min} представляет собой линейную функцию от γ:

$$\alpha_{\min} = \Xi - \gamma, \qquad (1)$$

где Ξ – некоторая константа, зависящая от частоты.

Для $\gamma \leq 90^{\circ}$ при варьировании частоты от 1 до 3 МГц Ξ изменяется в диапазоне 132...137° при погрешности угловых измерений не больше 1°.

Используя представления лучевой акустики, получим обобщенное выражение для определения значений углов приема, при которых должны наблюдаться локальные экстремумы поля, включая α_{\min} . Условием экстремума является сдвиг фаз между T_{E^-} и T^* -модами в точке приема, равный $\Delta \varphi = m\pi$, где m – целое отрицательное число. При расчете значения α_{\min} (и положений других локальных экстремумов) используется формула (1), в которой

$$\Xi = 180^{\circ} + \arcsin\left[\frac{n}{\sqrt{a^2 + b^2}}(1-\chi)\right] + \qquad \qquad \text{где } a = n + \sin 33^{\circ}; \ b = \cos 33^{\circ}; \\ n = C_L/C_T; \ \chi = \left[\frac{m C_T}{2\pi f R_O}\right].$$

Рис. 1. Влияние угла выступа на нормализованную амплитуду поля поперечной моды в объеме выступа при $R_{\lambda} \ll 1$: а – $\gamma = 35^{\circ}$ (1); 60° (2); 90° (3); $A_T = \cos \alpha$ (4); 6 – детализированная картина поля в области максимума: $\gamma = 90^{\circ}$ (1); 35° (2); 135° (3)

Рис. 2. Нормализованная амплитуда поля поперечной волны в образце с $\gamma = 35^{\circ}$, $R_{\lambda} << 1$: f = 1 МГц (1); 1,8 МГц (2); 3 МГц (3)

Как непосредственно следует из (1) и (2), при $\chi \ll 1$ величина $\alpha_{\min} \rightarrow 123^{\circ} - \gamma$, т. е. принимает минимальное значение. И, наоборот, увеличение χ *сопровождается росто*м α_{\min} , что согласуется с данными эксперимента.

Отметим совпадение неплохое расчетных и экспериментальных данных (в пределах ±1,5°) при значении m = -1 и полученных в предположении более раннего прихода Т*-моды в точку приема с временным сдвигом, равным половине периода волны. Экстремумам же с номерами m < -1 ($\alpha > \alpha_{\min}$) соответствуют быстро затухающие осцилляции кривой $A_T(\alpha)$, двойной размах амплитуды которых не превосходит 2...3 дБ. Если же угол выступа тупой $(\gamma = 135^{\circ})$, то, как следует из экспериментальной кривой (см. рис. 1, б), влияние Т*-моды на формируемое поле «окализовано» в окрестности а ~ 0, причем $\alpha_{\min} \approx -(12...13^{\circ})$, что согласуется с расчетным значением. В силу дополнительного влияния сопутствующей моды, значимой по величине, оценить амплитуду Т*-моды затруднительно.

Тем не менее очевидно, что при проведении ультразвукового контроля или измерений ($\gamma > 90^{\circ}$) пренебрегать влиянием отходящей поперечной моды недопустимо. С другой стороны, в некоторых случаях снижение ее влияния может быть достигнуто путем уменьшения угла выступа или модификации поверхности внутренней грани выступа.

Необходимо отметить, что поле *Т**-моды преимущественно зависит от пространственного распределения И силы его источников (мнимых) на поверхности передней грани выступа, определяемых амплитудой и законом ослабления головной волны, от длительности импульса, а также частоты волны и геометрии объекта, описываемых безразмерным параметром χ . Так как головная волна является источником Т*-моды, то была исследована зависимость ее амплитуды A_L^* от γ . Как установлено (рис. 3), нормализованная зависимость $\widetilde{A}_{L}^{*}(\gamma)$ имеет максимум, если угол выступа $\gamma = 90^{\circ}$.

Рис. 3. Влияние угла выступа на параметры ПАВ и возбуждаемых краевых волн при $R_{\lambda} << 1$: 1 – коэффициент прохождения ПАВ через ОСП выступа по амплитуде ($D_{\Pi AB}$)_A; 2 – коэффициент трансформации ПАВ в краевые моды по энергии ($K_{\Pi AB/E}$)_W; 3 – нормализованная амплитуда головной (поверхностной) волны \widetilde{A}_{I}^{*}

На основании хода зависимостей $A_T(\alpha)$ в окрестности локального минимума можно оценить вклад в результирующее поле отходящей Т*-моды. При этом учитывается тот факт, что при α → α_{\min} в точке приема $A_T \approx A_{TE} - A_T \cdot k R_O / k R_O$, где k – волновой вектор, а угол падения Т*-моды на поверхность приема $\sim 14...16^\circ$, где конкретное значение A_{TE} получено путем интерполяции зависимости $A_T(\alpha)$ в окрестности α_{\min} . Как показывают элементарные расчеты, наибольшее изменение амплитуды результирующего поля под влиянием отходящей моды также достигается, когда исследуемый образец имеет угол выступа $\gamma = 90^{\circ}$. Так, например, для f = 1,8 МГц амплитуда T^* -моды в окрестности а_{min} всего на 8...10 дБ меньше амплитуды максимума исследуемой функции. При значениях у, отличных от 90°, влияние отходящей моды на результирующее поле ослабевает.

Другая важная особенность в поведении формируемого поля поперечной моды заключается в том, что при $\gamma \leq 90^{\circ}$ и f = const в угловом диапазоне $0 \leq \alpha < \alpha_{\min} - \Delta \alpha$ нормализованная зависимость $\widetilde{A}_T(\alpha)$ с погрешностью не более 1...2 дБ может быть аппроксимирована квазилинейной логарифмической функцией

$$\widetilde{A}_T(\alpha) = 20 \lg(A_T / A_T^{\max}) = 1 - c\alpha, \quad (3)$$

где c – подобранный постоянный коэффициент, для f = 1,8 МГц $c \approx 0,15$ дБ/град, $\Delta \alpha$ соответствует периоду осцилляции функции в окрестности ее минимума.

Что касается поля в области $\alpha < 10^\circ$, где наиболее существенно проявляются интерференционные процессы, то оно весьма чувствительно к положению ПЭП относительно выступа, что приводит к изменению амплитуды и фазового сдвига между сопутствующей и краевой модами, сопровождающемуся сдвигом экстремумов результирующего поля.

На рис. 3 представлены данные о коэффициенте прохождения ПАВ через ОСП выступа с разным значением у. Установлено, что коэффициент прохождения ПАВ через ОСП выступа уменьшается на величину ~12 дБ в диапазоне варьирования у от 180° (плоская поверхность) до 35°. При этом коэффициент преобразования энергии ПАВ в краевые объемные моды в указанном диапазоне γ возрастает на ~ 90 %, а максимум зависимости $A_T(\alpha)$ изменяется не более чем на 2...3 дБ, т. е. дополнительная энергия краевых волн рассеивается по всему объему выступа образца. В то же время ширина верхней части (от максимума) поля излучения поперечной моды $A_{T}(\alpha)$, измеренная на уровне 6 дБ, в образцах с $\gamma \leq 90^{\circ}$ изменяется не более чем на 2...4°.

Волновой фронт продольной моды в исследуемой области образца имеет структуру, существенно отличающуюся от той, что формируется поперечной модой. Характерные изменения нормализованной амплитуды поля краевой продольной моды $\tilde{A}_{I}(\alpha)$, трансформированной и рассеянной на выступе, в зависимости от угла выступа у приведены на рис. 4. Как и следовало ожидать, уменьшение угла выступа сопровождается существенным расширением исследуемого поля, а также увеличением концентрации энергии в области $\alpha > 0^{\circ}$. Отличительная особенность этих зависимостей заключается в наличии выраженного минимума, лежащего несколько ниже $\alpha = 0^{\circ}$, и двух максимумов, наибольший из которых расположен в области $\alpha > 0^{\circ}$. Смещение глобального максимума в область $\alpha > 0^{\circ}$ с ростом γ достигает 40...50°, а соотношение между этим максимумом и минимумом поля составляет 6...10 дБ.

Рис. 4. Влияние угла выступа на нормализованную амплитуду поля продольной волны в объеме выступа при $R_{\lambda} << 1$: $\gamma = 35^{\circ}$ (1); 90° (2); 135° (3)

Важно отметить, что амплитуда поперечной моды, оцененная экспериментально, в окрестности $\alpha \sim 0$ практически на порядок больше продольной волны, однако эта разница нивелируется при отклонении α от нулевого значения. Тем не менее, ввиду существенной разницы скоростей между поперечной и продольной модами, представляется возможным их совместное использование при контроле физико-механических свойств материалов.

Применение ПЭП волны Рэлея для контроля объектов с технологическими выступами трансформированной ИЗ ПАВ поперечной волной перспективно в том случае, когда дефект лежит в области углов $\alpha \approx 0^{\circ}$ или выше. При этом прозвучивание объекта может производиться в совмещенном или раздельном режиме, используя традиционные схемы - «тандем» или «дуэт». В последнем случае при $R_{\lambda} \ll 1$ угол между плоскостями падения ПЭП следует выбирать не более 80...100°, чтобы не допустить значительных потерь энергии волны на отражение. Такие преобразователи могут быть использованы для контроля объектов с положительной и отрицательной кривизной. В ряде же случаев – при расширении угловой области, в которой могут быть обнаружены дефекты, – они могут быть применены совместно с ПЭП подповерхностных поперечных волн.

Влияние высоты выступа на трансформацию и прохождение ПАВ. В ряде случаев поверхностные дефекты могут быть расположены в труднодоступной области, лежащей за выступом, что существенно затрудняет их выявление традиционными методами. Проанализируем возможности выявления таких дефектов в эхо-режиме с помощью преобразователей волны Рэлея, реализующих два варианта прозвучивания объекта с выступом высотой *h*. В первом варианте выявление дефекта осуществляется согласно схеме: ПАВ \rightarrow *T*-мода \rightarrow ПАВ \rightarrow ДЕФЕКТ \rightarrow ПАВ \rightarrow *T*-мода \rightarrow ПАВ. Во втором варианте используется ПАВ, которая огибает выступ. Пусть амплитуды отраженного от дефекта сигнала в указанных случаях A_1 и A_2 соответственно; К₁ и К₂ – коэффициенты трансформации по амплитуде ПАВ в

Т-моду и обратно на ОСП выступа; F₁ – функция ослабления Т-моды в области расположения выступа; \mathcal{R}_{∂} – коэффициент отражения ПАВ от дефекта; *D*₁ и *D*₂ – коэффициенты прохождения ПАВ по амплитуде через ребра граней прямоугольного выступа, а F₂ – функция ослабления ПАВ, распространяющейся по наружной поверхности выступа. Опуская множители, характеризующие распространение ПАВ вне выступа, а также пренебрегая полем сопутствующей моды, амплитуда сигнала, отраженного от дефекта (за выступом) и пришедшего на приемный ПЭП согласно указанным вариантам прозвучивания, примет вид:

$$A_{1} \sim K_{1}^{2} K_{2}^{2} F_{1}^{2} \mathcal{R}_{\partial} = Y_{1}^{2} \mathcal{R}_{\partial};$$

$$A_{2} \sim D_{1}^{2} D_{2}^{2} F_{2}^{2} \mathcal{R}_{\partial} = Y_{2}^{2} \mathcal{R}_{\partial}, \qquad (4)$$

где $Y_1 = K_1 K_2 F_1$; $Y_2 = D_1 D_2 F_2$.

На рис. 5 представлены данные эксперимента, позволяющие на конкретном примере оценить потери энергии волны при прозвучивании объекта с выступом как в теневом, так и в эхо-

режиме и выявить возможности использования эффекта трансформации мод для обнаружения поверхностных дефектов. Как видно, ход зависимостей A₁ и A₂ при увеличении высоты выступа противоположен, так что при некотором значении $h_{\lambda} = h/\lambda_{\Pi AB} > h_{\lambda}^*$ трансформируемый в процессе прохождения акустический сигнал будет превалировать по амнетрансформированной плитуде над ПАВ. Амплитуда дважды трансформированного на выступе сигнала A_1 является возрастающей функцией h_{λ} , выходящей на насыщение уже при значении $h_{\lambda} \approx 3$, для которого измеренное соотношение амплитуд $20lg(A_2/A_1) \approx -24$ дБ, а 20lg(A₁/A₀) ≈ -10,5 дБ, где A₀ - амплитуда опорного сигнала ПАВ, измеренного на той же акустической базе в отсутствие выступа, т. е. при работе в эхорежиме потери на 4-кратную трансформацию мод составят ~21 дБ. Очевидно, что уменьшение длины выступа приведет к росту амплитуды сигнала вследствие снижения потерь энергии, вызванных расхождением сигнала.

Рис. 5. Прохождение волны Рэлея через участок с прямоугольным выступом разной высоты: 1 – амплитуда нетрансформированной волны A_2 ; 2 – амплитуда трансформированной на выступе волны A_1 ; 3, 4 – отношение амплитуд A_2/A_1 ; частота f = 0.985 МГц (\circ, Δ, \Box); 1,72 МГц ($\bullet, \Delta, \blacksquare$)

Предварительные исследования, проведенные в условиях, когда искусственные дефекты расположены за выступом, показали принципиальную возможность их обнаружения указанным методом. При этом для снижения уровня помех наиболее предпочтительными являются раздельные схемы прозвучивания объекта, включая «тандем» и «дуэт». Несомненно, что при дистанционном зондировании объекта, реализующем преимущества использования преобразователей ПАВ, необходимо учитывать влияние состояния поверхности на ослабление рэлеевских волн.

Выводы

Изучены закономерности формирования акустического поля трансформированных и рассеянных на выступе объемных волн, первичным источником которых является преобразователь волны Рэлея, и установлено следующее:

– результирующее поле поперечных волн $A_T(\alpha)$ имеет максимум, расположенный в окрестности продолжения контактной поверхности образца ($\alpha \sim 0^\circ$), смещающийся на 5...7° при варьировании угла выступа γ в диапазоне 35...135°, а также ярко выраженный локальный минимум, возникающий в результате интерференции как рассеянных на угле выступа, так и отходящих от его внутренней грани поперечных волн; причем источником последних, как показано, является энергия подповерхностных продольных (головных) волн,

трансформированных из ПАВ; установлено, что координата локального минимума α_{min} линейно зависит от γ , а расхождение расчетных и опытных данных не превышает 1...1,5°;

– нормализованные зависимости поля поперечной моды $A_T(\alpha)$ в диапазоне 0°< $\alpha < \alpha_{min}$ могут быть аппроксимированы убывающей линейнологарифмической функцией с углом наклона, не зависящим от γ ;

– в исследованном диапазоне углов выступа γ структура поля продольной моды $A_L(\alpha)$ имеет существенное отличие от поля поперечной моды, заключающееся в наличии двух ярко выраженных максимумов и минимума поля, лежащего в области углов $\alpha_{\min} = -(10...20)^\circ$, при этом уменьшение угла выступа γ сопровождается существенным расширением поля;

– получены зависимости коэффициентов прохождения ПАВ через выступ от его высоты, определено соотношение амплитуд чисто поверхностной и дважды трансформированной мод и рассмотрена возможность использования последней для обнаружения поверхностных дефектов, лежащих за высоким выступом; результаты настоящих исследований могут быть применены для контроля объектов с технологическими выступами, измерения акустических свойств материалов и создания преобразователей поперечных мод.

СПИСОК ЛИТЕРАТУРЫ

1. **Викторов, И. А.** Звуковые поверхностные волны в твердых телах / И. А. Викторов. – М.: Наука, 1981. – 288 с.

2. Поверхностные акустические волны в неоднородных средах / С. В. Бирюков [и др.]. – М. : Нау-ка, 1991. – 415 с.

3. Гурвич, А. К. Ультразвуковой контроль сварных швов / А. К. Гурвич. – Киев : Техніка, 1972. – 460 с.

4. **Ермолов, И. Н.** Неразрушающий контроль: справочник в 7 т. Т. 3 : Ультразвуковой контроль / И. Н. Ермолов, Ю. В. Ланге ; под ред. чл.-кор. РАН В. В. Клюева. – М. : Машиностроение, 2004. – 832 с.

5. Данилов, В. Н. Исследование рассеяния поперечной волны на трещине / В. Н. Данилов, И. Н. Ермолов, С. В. Ушаков // Дефектоскопия. – 2001. – № 5. – С. 42–50.

6. Баев, А. Р. Особенности возбуждения и распространения продольных и поперечных подповерхностных волн в твердых телах / А. Р. Баев, М. В. Асадчая // Дефектоскопия. – 2005. – № 9. – С. 19–43.

7. Акустические поля малоапертурных преобразователей. Поперечные волны, излучаемые прямоугольным источником нормальной силы / А. М. Люткевич [и др.] // Контроль. Диагностика. – 2004. – № 4. – C. 3–8.

8. Аббакумов, К. Е. Влияние нарушения акустического контакта на распространение волн Стоунли вблизи границы твердых полупространств / К. Е. Аббакумов, Р. С. Коновалов // Дефектоскопия. -2008. – № 3. – C. 52–58.

Статья сдана в редакцию 12 декабря 2013 года

Мария Вадимовна Асадчая, канд. техн. наук, ст. науч. сотрудник, Институт прикладной физики НАН Беларуси. Тел.: 8-017-331-63-41.

Алексей Романович Баев, д-р техн. наук, проф., Институт прикладной физики НАН Беларуси. E-mail: baev@iaph.bas-net.by.

Ольга Сергеевна Сергеева, ассистент, Белорусско-Российский университет. Тел.: 8-0222-22-52-12. Александр Леонидович Майоров, канд. техн. наук, Институт прикладной физики НАН Беларуси. Тел.: 8-017-284-20-02.

Mariya Vadimovna Asadchaya, PhD (Engineering), senior researcher, Institute of Applied Physics of the National Academy of Sciences of Belarus. Phone: 8-017-331-63-41. Aleksey Romanovich Baev, DSc (Engineering), Prof., Institute of Applied Physics of the National Academy of

nstin usia-Russi cering), Institute

Olga Sergeevna Sergeeva, assistant lecturer, Belarusian-Russian University. Phone: 8-0222-22-52-12.

Aleksandr Leonidovich Mayorov, PhD (Engineering), Institute of Applied Physics of the National Academy of