УДК 621.372.8:535 ОЦЕНКИ ПОГРЕШНОСТЕЙ РЕФЛЕКТОМЕТРИИ НАНОРАЗМЕРНЫХ СЛОЕВ

С. О. ПАРАШКОВ, А. Б. СОТСКИЙ, ^{*}Л. И. СОТСКАЯ Учреждение образования «МОГИЛЕВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ им. А.А. Кулешова» ^{*}Государственное учреждение высшего профессионального образования «БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ» Могилев, Беларусь

iers

Метод рефлектометрии, основанный на обработке углового спектра энергетического коэффициента отражения светового пучка от подложки с наноразмерным слоем, может составить успешную конкуренцию эллипсометрии, будучи более простым в реализации. В настоящей работе обсуждаются актуальные вопросы чувствительности данного метода.

Путем сведения волновых уравнений к интегральным уравнениям получены следующие аналитические выражения

$$R_{p} = \frac{\sigma_{+}\varepsilon_{-} - \sigma_{-}\varepsilon_{+} + i[\beta^{2}\varepsilon_{-}\varepsilon_{+}\int_{-\infty}^{\infty}\Delta(1/\varepsilon)dy + \sigma_{-}\sigma_{+}\int_{-\infty}^{\infty}\Delta(\varepsilon)dy]}{\sigma_{+}\varepsilon_{-} + \sigma_{-}\varepsilon_{+} - i[\beta^{2}\varepsilon_{-}\varepsilon_{+}\int_{-\infty}^{\infty}\Delta(1/\varepsilon)dy - \sigma_{-}\sigma_{+}\int_{-\infty}^{\infty}\Delta(\varepsilon)dy]} + O\left[\left(\frac{d}{\lambda}\right)^{2}\right], \quad (1)$$

$$R_{s} = \left[\sigma_{+} - \sigma_{-} - ik_{0}^{2}\int_{-\infty}^{\infty}\Delta(\varepsilon)dy\right]\left[\sigma_{+} + \sigma_{-} + ik_{0}^{2}\int_{-\infty}^{\infty}\Delta(\varepsilon)dy\right]^{-1} + O\left[\left(\frac{d}{\lambda}\right)^{2}\right], \quad (2)$$

где R_p и R_s – амплитудные коэффициенты отражения волн p и s поляризации от структуры, в которой ось 0y указывает направление неоднородности, ε_+ и ε_- – диэлектрические проницаемости области, из которой падает излучение и подложки, $\sigma_{\pm} = k_0 \sqrt{\varepsilon_{\pm} - \beta^2}$, $k_0 = 2\pi/\lambda$, $\beta = \sin\theta$, θ – угол падения, d – толщина наноразмерного слоя. Интегрирование в (1), (2) осуществляется по области наноразмерного слоя:

$$\int_{-\infty}^{\infty} \Delta(\varepsilon) dy = \begin{cases} \varepsilon(y) - \varepsilon_{+} & (y > \overline{y}) \\ \varepsilon(y) - \varepsilon_{-} & (y < \overline{y}) \end{cases}, \quad \int_{-\infty}^{\infty} \Delta(1/\varepsilon) dy = \begin{cases} 1/\varepsilon(y) - 1/\varepsilon_{+} & (y > \overline{y}) \\ 1/\varepsilon(y) - 1/\varepsilon_{-} & (y < \overline{y}) \end{cases}$$

где \overline{y} – некоторая координата внутри слоя. Как видно из (1), (2), регистрируемые функции $|R_{p,s}(\theta)|^2$ зависят от d/λ квадратично, если среды в структуре диэлектрические и линейно, если одна из этих сред является металлом. Очевидно, что в последнем случае чувствительность измерений параметров наноразмерных слоев будет выше, а ошибки восстановления показателя преломления *n* и толщины слоя d – ниже.

Представленные соображения иллюстрируют рис.1, 2 и табл. 1. Расчеты выполнены при $\lambda = 0,6328$ µm для окисных слоев на кремниевой и

алюминиевой подложках. Обратная задача решена методом наименьших квадратов, при этом в качестве «экспериментальных» использованы зависимости, приведенные на рис.1 и аналогичные им, полученные в результате строгого расчета функций $|R_{p,s}(\theta)|^2$. Погрешности измерений рассматривались как ошибки округления при оптимальном детектировании мощности отраженного света 8-ми разрядным АЦП.

Рис. 1. Зависимости $|R_{p,s}(\theta)|^2$ для волн p (а) и s (б) поляризации при отражении света от пленки Al_2O_3 на поверхности Al (1, 2) и пленки SiO_2 на поверхности Si (3, 4). Кривые 1, 3 – $d \mu m$; 2, 4 – d=0,01 μm

Пленка	Исходные значения		Восстановленные			
			S		р	
	n	$d(\mu m)$	n	$d(\mu m)$	n	$d(\mu m)$
SiO ₂	1,460	1.10^{-3}	1,004	$4,98 \cdot 10^{-3}$	3,208	$1,30\cdot10^{-3}$
	1,460	$1 \cdot 10^{-2}$	1,457	$1,03 \cdot 10^{-2}$	1,394	$1,11 \cdot 10^{-2}$
Al_2O_3	1,652	$1 \cdot 10^{-3}$	1,749	7,94.10-4	1,466	$1,18 \cdot 10^{-3}$
	1,652	1·10 ⁻²	1,814	$7,46 \cdot 10^{-3}$	1,639	$1,02 \cdot 10^{-2}$

Табл. 1. Погрешности решения обратной задачи

В табл 1. толщина наноразмерной соответствии с пленки восстанавливается меньшей относительной С погрешностью, чем ee показатель преломления, причем при исследовании окисла на поверхности полупроводника предпочтительны волны *s* поляризации, а в случае окислов на поверхности металлов – волны р поляризации.