
МЕЖГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ»

Кафедра «Электропривод и автоматизация промышленных установок»

ЭЛЕМЕНТЫ АВТОМАТИЗИРОВАННОГО ЭЛЕКТРОПРИВОДА

Методические рекомендации к курсовому проектированию для студентов специальности
1-53 01 05 «Автоматизированные электроприводы» дневной и заочной форм обучения

УДК 621.3 ББК 31.2 Э75

Рекомендовано к изданию учебно-методическим отделом Белорусско-Российского университета

Одобрено кафедрой «Электропривод и автоматизация промышленных установок» «21» декабря 2021 г., протокол № 6

Составитель О. А. Капитонов

Репензент С. В. Болотов

Методические рекомендации предназначены для студентов специальности 1-53 01 05 «Автоматизированные электроприводы» дневной и заочной форм обучения. Даны необходимые сведения для выполнения курсовой работы.

Учебно-методическое издание

ЭЛЕМЕНТЫ АВТОМАТИЗИРОВАННОГО ЭЛЕКТРОПРИВОДА

Ответственный за выпуск Г. С. Леневский

Корректор И. В. Голубцова

Компьютерная верстка Н. П. Полевничая

Подписано в печать . Формат $60\times84/16$. Бумага офсетная. Гарнитура Таймс. Печать трафаретная. Усл. печ. л. . Уч.-изд. л. . Тираж 99 экз. Заказ №

Издатель и полиграфическое исполнение: Межгосударственное образовательное учреждение высшего образования «Белорусско-Российский университет». Свидетельство о государственной регистрации издателя, изготовителя, распространителя печатных изданий № 1/156 от 07.03.2019. Пр-т Мира, 43, 212022, г. Могилев.

© Белорусско-Российский университет, 2022

Содержание

Введение	4
1 Состав курсовой работы	5
2 Задания по курсовой работе	6
3 Методические указания по выполнению курсовой работы	13
3.1 Для электроприводов постоянного тока	13
3.2 Для электроприводов переменного тока с фазовым	
регулированием напряжения в цепи статора асинхронного	
электродвигателя	16
3.3 Для электроприводов переменного тока с частотным	
регулированием	17
Список литературы	21

Введение

Современный автоматизированный электропривод представляет собой весьма сложную структуру, состоящую из различного рода электронных, электромеханических и механических устройств, которые принято называть элементами автоматизированного электропривода. Типаж этих элементов, их конструктивная реализация достаточно многообразны.

В объеме рассматриваемого курса упор сделан на изучение элементной базы силовой преобразовательной техники: преобразователей постоянного напряжения и тока, преобразователей частоты, различного рода датчиков и исполнительных электромеханических устройств. Для закрепления материала по курсу учебным планом специальности предусмотрена курсовая работа по элементам автоматизированного электропривода.

1 Состав курсовой работы

Объем курсовой работы: 1 лист формата A1, 2 листа формата A2 – графической части и 20–25 листов формата A4 Пояснительной записки. Пояснительная записка выполняется в соответствии с ГОСТ 2.105–95. Графическая часть работы оформляется в соответствии с ГОСТ 2.702–2011, ГОСТ 2.106–96.

На первом листе графической части, как правило, вычерчиваются функциональная и структурная схемы автоматизированного электропривода.

На втором и третьем листах разрабатываются схемы электрические принципиальные и/или сборочные чертежи датчика в составе системы автоматизированного электропривода.

Пояснительная записка должна включать следующие части и разделы.

Титульный лист.

Введение.

Здесь следует дать краткое описание выбранного электропривода, указать, для каких конкретно механизмов и почему он используется, его преимущество перед другими электроприводами, отметить также цели и задачи данной работы.

1 Технические требования к электроприводу.

Здесь следует составить таблицу технических требований к электроприводу согласно заданию на курсовую работу. Пример приведен в таблице 1.

Таблица 1 – Технические требования к электроприводу

Значение
Синхронный двигатель
Тиристорный
10
1000
3
S2
$M_c = \text{const}$
$J_m/J_p=1,0$
Прямой
Электромеханическое
Отсутствует
Имеется
В системе с преобразователем
По необходимости
Тепловая, нулевая, от перенапряжений,
токовая, максимальная токовая
Обрыв фазы и неправильный порядок чередования фаз

Окончание таблицы 1

Параметр	Значение
Разрабатываемый блок	Задатчик интенсивности (цифровой)
Разрабатываемый датчик	Датчик угловых перемещений (цифровой)

- 2 Обоснование и выбор типа приводного электродвигателя.
- 3 Разработка и описание схемы электрической принципиальной силовой части электропривода.
 - 4 Разработка схемы функциональной системы управления электропривода.
 - 5 Синтез системы автоматического регулирования.
 - 6 Обзор вариантов реализации датчиков.

В этом разделе, в соответствии с заданием, производится обзор схем электрических принципиальных и вариантов конструкции датчиков. В результате анализа вариантов реализации для каждого датчика должна быть разработана схема электрическая принципиальная, произведен расчет и выбор электронных компонентов, в пояснительной записке — приведено описание принципа работы схемы.

Заключение.

Список литературы.

2 Задания по курсовой работе

Каждому студенту дается одна из пяти тем курсового проекта и двухзначный номер варианта исходных данных в рамках темы. Исходные данные приведены в таблицах 2–17. При этом часть исходных данных выбирается по первой цифре номера варианта, часть данных – по второй.

При выборе вариантов исходных данных для электропривода с шаговым электродвигателем может получиться так, что шаговые электродвигатели на заданную мощность промышленностью не выпускаются. В этом случае следует использовать вентильный электродвигатель и обеспечить его управление по техническим требованиям, определенным номером варианта, при этом подлежащие расчету и разработке блок и датчик следует выбрать из таблиц 13 и 15 для темы «Вентильный электропривод». В качестве замены шагового электродвигателя можно применить и индукторные электродвигатели.

Тема 1. Разработка автоматизированного электропривода на базе асинхронного электродвигателя.

Вид нагрузки электропривода – $M_c \sim \omega^2$.

Реверс – отсутствует.

Наличие регуляторов – по необходимости.

Типы защит электропривода – нулевая, тепловая, токовая, максимальная токовая.

Таблица 2 – Исходные данные по первой цифре номера варианта

Первая цифра номера	0	1	2	3	4	5	6	7	8	9
варианта										
Тип преобразователя	Тири	сторн	ый (си	имистор	ный)	Транзисторный				
Диапазон регулирования при	1,5	3	5	10	30	50	100	300	1000	1000
статизме 10 %										0
Приведенный момент	0,5	1,0	1,0	2,0	3,0	4,0	4,0	6,0	6,0	1,0
инерции механизма, $J_{\text{мех}}/J_p$										
Наличие генераторного		-	Имеет	ся		Отсутствует				
режима										
Частота вращения при задан-	750			1000		1500		300	00	
ной мощности на валу элект-										
родвигателя, об/мин										

Таблица 3 — Тип датчика по первой цифре номера варианта для AД с частотным регулированием

Первая цифра номера варианта	Тип датчика в электроприводе
0	ЭДС (переменного тока)
1	Асинхронный тахогенератор
2	Параметрический датчик частоты вращения
3	Скольжения
4	Магнитного потока переменного
5	Контроля состояния вентилей в УВ
6	Давления в нагнетательных установках
7	Температуры
8	Момента электромагнитного (параметрический)
9	Измерения коэффициента мощности

Таблица 4 — Тип датчика по первой цифре номера варианта для АД с регулированием напряжения

Первая цифра номера варианта	Тип датчика в электроприводе
0	ЭДС (переменного тока)
1	Суммарного потока в магнитопроводе статора электродвигателя
2	Частоты вращения на базе синхронного тахогенератора
3	Параметрический датчик частоты вращения
4	Измерения коэффициента мощности
5	Тока с отсечкой по току (в цепи переменного тока)
6	Скольжения
7	Датчик производительности в нагнетательных установках
8	Датчик давления в нагнетательных установках
9	Схема учета активной электроэнергии

Таблица 5 – Исходные данные по второй цифре номера варианта

Вторая цифра номера	0	1	2	3	4	5	б	7	8	9		
варианта												
Мощность на валу	0,1	0,25	0,5	0,75	1,0	2,0	3,0	5,0	10,0	20,0		
электродвигателя, кВт												
Режим работы	S1	S1	S2	S3	S2	S3	S6	S3	S2	S1		
электродвигателя												
Торможение	Без		Динами	Динамическое				Конденсаторно-				
	тормож	ения	Неуправ-	Упр	рав-	тивное		динамическое				
			ляемое	ляе	мое							
Реализация условий	Вэ	лектр	одвигателе		В преобразователе							
энергосбережения					_							
Вторая цифра номера	0	1	2	3	4	5	б	7	8	9		
варианта												
Виды блокировок	Обрыв	фазы	Непр	авиль	ный	Обрыв фазы и непра-						
			по	порядок				вильный порядок				
			чередо	чередования фаз				чередования фаз				

Тема 2. Разработка автоматизированного электропривода на базе синхронного электродвигателя.

Вид нагрузки электропривода – M_c = const.

Реверс – отсутствует.

Наличие регуляторов – по необходимости.

Типы защит электропривода – нулевая, тепловая, токовая, максимальная токовая.

Таблица 6 – Исходные данные по первой цифре номера варианта

Первая цифра номера	0	1	2	3	4	5	6	7	8	9	
варианта											
Тип преобразователя		Тир	истор	ный		Транзисторный					
Диапазон регулирования при статизме 10 %	1,5	3	5	10	30	50	100	300	1000	10000	
Приведенный момент инерции механизма, J_{Mex}/J_p	0,5	1,0	1,0	2,0	3,0	4,0	4,0	6,0	6,0	1,0	
Наличие генераторного режима		V	Імеето	ся		Отсутствует					
Частота вращения при заданной мощности на валу электродвигателя, об/мин	750			10	000	1500			3	000	

Таблица 7 – Тип датчика по первой цифре номера варианта

Первая цифра номера варианта	Тип датчика в электроприводе
0	Напряжения (переменного тока)
1	Угловых перемещений (цифровой)
2	Тока с отсечкой (переменного тока)
3	Мощности (реактивной)

Окончание таблицы 7

Первая цифра номера варианта	Тип датчика в электроприводе
4	Контроля состояния вентилей в шестипульсной схеме УВ
5	Линейных перемещений (цифровой)
6	Мощности (активной)
7	Частоты вращения (цифровой')
8	Влажности
9	Освещения

Таблица 8 – Исходные данные по второй цифре номера варианта

Вторая цифра номера варианта	0	1	2	3	4	5	б	7	8	9
Мощность на валу электро- двигателя, кВт	0,1	0,25	0,5	0,75	1,0	2,0	3,0	5,0	10,0	20,0
Режим работы электро- двигателя	S1	S1	S2	S3	S2	S3	S6	S3	S2	S1
Торможение	Без тормо- жения		Динамическое неуправляемое			Рекул тив	пера- ное	Динамическое управляемое		
Реализация условий энерго- сбережения	Вэл	тектро	двиг	ателе		В преобразователе				
Виды блокировок		рыв азы	Неправильны порядок чередования ф			Обрыв фазы и неправильный порядок чередования фаз				

Тема 3. Разработка автоматизированного электропривода на базе вентильного электродвигателя.

Вид нагрузки электропривода – M_c = const.

Реверс – имеется.

Наличие регуляторов – по необходимости.

Типы защит электропривода — нулевая, тепловая, токовая, максимальная токовая.

Рассчитать полосу пропускания электропривода.

Таблица 9 – Исходные данные по первой цифре номера варианта

Первая цифра номера варианта	0	1	2	3	4	5	б	7	8	9	
Диапазон регулирования при статизме 10 %	1,5	3	5	10	30	50	100	300	1000	10000	
Приведенный момент инерции механизма, J_{Mex}/J_p	0,5	1,0	1,0	2,0	3,0	4,0	4,0	6,0	6,0	1,0	
Наличие генераторного	Имеется					Отсутствует					
режима											
Частота вращения при задан-	750			1000		1500			3000		
ной мощности на валу элект-											
родвигателя, об/мин											

Таблица 10 – Тип датчика по первой цифре номера варианта

Первая цифра номера варианта	Тип датчика в электроприводе
0	Напряжения (постоянного тока)
1	Угловых перемещений (электромеханический)
2	Линейных перемещений (электромеханический)
3	Потока (в якоре электродвигателя)
4	Положения ротора
5	Мощности (активной)
6	Контроля состояния вентилей в АИ
7	Электромагнитного момента электродвигателя
8	Момента на валу электродвигателя
9	Веса (усилия)

Таблица 11 – Исходные данные по второй цифре номера варианта

Вторая цифра номера варианта	0	1	2	3	4	5	6	7	8	9		
Мощность на валу электро-	0,1	0,25	0,5	0,75	1,0	2,0	3,0	5,0	10,0	20,0		
двигателя, кВт												
Режим работы электро-	S1	S1	S2	S3	S2	S3	S6	S3	S2	S1		
двигателя												
Торможение	Без		Динамическое			Рекупера-		Динамическое				
	тормо-		неуправляемое			тивное		управляемое				
	ж	ния										
Вторая цифра номера варианта	0	1	2	3	4	5	б	7	8	9		
Реализация условий энерго-	Вэл	тектро	двиг	ателе		В преобразователе						
сбережения												
Виды блокировок	Обј	ЭЫВ	Неправильный			Обрыв фазы и неправильный						
	фазы поряде				ОК	к порядок чер				дования фаз		
			чере	дован	ия фаз							

Тема 4. Разработка автоматизированного электропривода на базе электродвигателя постоянного тока.

Вид нагрузки электропривода – P_c = const.

Реверс – имеется.

Наличие регуляторов – по необходимости.

Типы защит электропривода — нулевая, тепловая, токовая, максимальная токовая.

Рассчитать полосу пропускания электропривода.

Таблица 12 – Исходные данные по первой цифре номера варианта

Первая цифра номера варианта	0	1	2	3	4	5	6	7	8	9	
Диапазон регулирования при статизме 10 %	1,5	3	5	10	30	50	100	300	1000	10000	
Приведенный момент инерции механизма, J_{Mex}/J_p	0,5	1,0	1,0	2,0	3,0	4,0	4,0	6,0	6,0	1,0	
Наличие генераторного режима			Имеет	ся		Отсутствует					
Частота вращения при заданной мощности на валу электродви- гателя, об/мин	750		1000		1500			3000			

Таблица 13 – Тип датчика по первой цифре номера варианта

Первая цифра номера варианта	Тип датчика в электроприводе
0	ЭДС (в ЭП постоянного тока)
1	Напряжения (в ЭП постоянного тока)
2	Тахогенератор постоянного тока
3	Частоты вращения (параметрический)
4	Тока с токоограничением
5	Магнитного потока
6	Момента электромагнитного (параметрический)
7	Линейных перемещений (электромеханический)
8	Контроля состояния вентилей (силовых)
9	Измерения вибрации

Таблица 14 – Исходные данные по второй цифре номера варианта

Вторая цифра номера	0	1	2	3	4	5	6	7	8	9	
варианта											
Мощность на валу электро-	0,1	0,25	0,5	0,75	1,0	2,0	3,0	5,0	10,0	20,0	
двигателя, кВт											
Вторая цифра номера	0	1	2	3	4	5	6	7	8	9	
варианта											
Режим работы электро-	S1	S1	S2	S3	S2	S3	S6	S3	S2	S1	
двигателя											
Торможение	Без	гор-	Динамическое			Реку	пера-	Дин	Динамическое		
	мож	ения	неуправляемое			тивное управляет				мое	
Реализация условий энерг-	В эл	іектро	двига	геле		В преобразователе					
осбережения											
Виды блокировок	Обр	ЭЫВ	Неправильный			Обрыв фазы и неправильный					
	фа	ЗЫ	порядок			порядок чередования фаз					
			чере	довані	ия фаз						

Тема 5. Разработка автоматизированного электропривода на базе шагового электродвигателя.

Вид нагрузки электропривода – P_c = const.

Реверс – имеется.

Наличие регуляторов – по необходимости.

Типы защит электропривода – нулевая, тепловая, токовая, максимальная токовая.

Таблица 15 – Исходные данные по первой цифре номера варианта

Первая цифра номера варианта	0	1	2	3	4	5	6	7	8	9	
Диапазон регулирования при статизме 10 %	1,5	3	5	10	30	50	100	300	1000	10000	
Приведенный момент инерции механизма, J_{Mex}/J_p	0,5	1,0	1,0	2,0	3,0	4,0	4,0	6,0	6,0	1,0	
Наличие генераторного режима		V	Імеет	СЯ		Отсутствует					
Частота вращения при заданной мощности на валу электродвигателя, об/мин	750		1000		1500			3000			

Таблица 16 – Тип датчика по первой цифре номера варианта

Первая цифра номера варианта	Тип датчика в электроприводе
0	Напряжения (в цепи постоянного тока)
1	Цифровой индикатор скорости
2	Датчик линейных перемещений (цифровой)
3	Датчик угловых перемещений (цифровой)
4	Контроля состояния вентилей в силовой схеме
5	Цифровой индикатор перемещения (угла)
6	Тока (в цепи постоянного тока)
7	Датчик контроля уровня жидкости
8	Датчик контроля деформации
9	Датчик частоты вращения (цифровой)

Таблица 17 – Исходные данные по второй цифре номера варианта

Вторая цифра номера	0	1	2	3	4	5	6	7	8	9	
варианта											
Мощность на валу электро-	0,1	0,25	0,5	0,75	1,0	2,0	3,0	5,0	10,0	20,0	
двигателя, кВт											
Режим работы электро-	S1	S1	S2	S3	S2	S3	S6	S3	S2	S1	
двигателя											
Вторая цифра номера	0	1	2	3	4	5	б	7	8	9	
варианта											
Торможение	Без	тор-	Динамическое			Рекупера- Дин			намическое		
	мож	ения	неу	правля	немое	тив	ное	управляемое			
Реализация условий энерго-	Вэл	пектро	двига	теле		Вп	реобра	бразователе			
сбережения											
Виды блокировок	Обј	рыв	Неправильный			Обрыв фазы и неправильный					
	фа	ЗЫ	порядок			порядок чередования фаз					
			чере	довані	ия фаз						

3 Методические указания по выполнению курсовой работы

На основании исходных данных для выполнения курсовой работы выбираются тип электродвигателя и его мощность.

На основании данных режима работы электродвигателя по ГОСТ 183–74 определяется номинальный ток и допустимый ток перегрузки. При этом следует принять: для режима S2 - $t_{работы} = 10$ мин; S3 - ПВ = 15 %, $t_{цикла} = 10$ мин; S6 - ПВ = 15 %, $t_{иикла} = 10$ мин.

По расчетным значениям рабочего тока выбирается электроаппаратура защиты электродвигателя и, если будет определено заданием, рассчитываются и выбираются элементы силового блока преобразователя.

В соответствии с исходными данными для выполнения курсовой работы и нижеследующими рекомендациями выбирается структура силового блока преобразователя (рисунки 1-10).

3.1 Для электроприводов постоянного тока

Основные характеристики, определяющие применение (см. рисунок 1):

- 1) нереверсивный;
- 2) диапазон D = 20;
- 3) статизм S = 10 %;
- 4) нагрузка M_c = const;
- 5) без генераторного режима и рекуперации;
- 6) $K_{cx} = 0.9$;

7)
$$f_{nped.np} = \frac{mf}{2} = 50 \, \Gamma \text{u};$$

8) область применения – до 5 кВт.

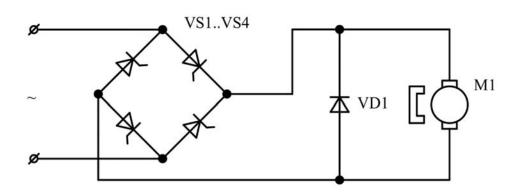


Рисунок 1 – Двухпульсная схема

Основные характеристики, определяющие применение (см. рисунок 2):

- 1) нереверсивный;
- 2) диапазон D = 100;
- 3) статизм S = 10 %;
- 4) нагрузка M_c = const;

- 5) без генераторного режима и рекуперации;
- 6) $K_{cx} = 1,17$;
- 7) $f_{nped.np} = 75 \Gamma_{\text{Ц}};$
- 8) область применения до 30 кВт.

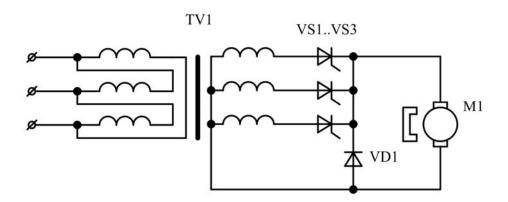


Рисунок 2 – Трехпульсная схема

Основные характеристики, определяющие применение (см. рисунок 3):

- 1) реверсивный;
- 2) диапазон D = 1000;
- 3) статизм S = 5 %;
- 4) $K_{cx} = 2,34$;
- 5) $f_{nped.np} = 150 \ \Gamma$ ц;
- 6) область применения до 3000 кВт;
- 7) нагрузка $M_c = \text{const};$
- 8) обеспечивает генераторный режим работы двигателя и рекуперацию.

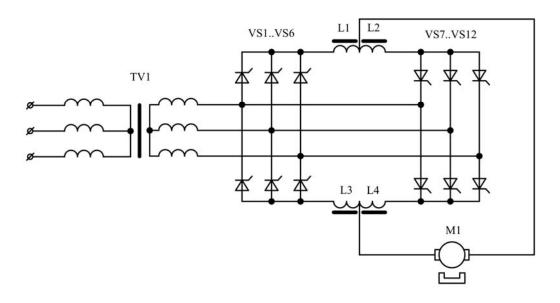


Рисунок 3 – Шестипульсная схема

Схема может быть выполнена с раздельным управлением без уравнительных дросселей.

Основные характеристики, определяющие применение (см. рисунок 4):

- 1) нереверсивный;
- 2) диапазон D = 50;
- 3) статизм S = 10 %;
- 4) отсутствует генераторный режим и рекуперация;
- 5) $K_{cx} = 0.9$;
- 6) $f_{nped.np} = 150 \ \Gamma$ ц;
- 7) область применения 3...5 кВт;
- 8) нагрузка M_c = const.

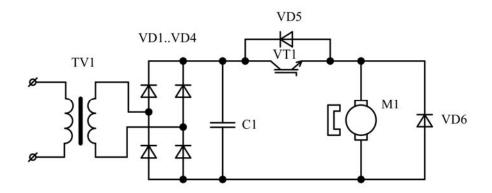


Рисунок 4 – Схема широтно-импульсного управления – транзисторная

Основные характеристики, определяющие применение (см. рисунок 5):

- 1) нереверсивный;
- 2) диапазон D = 30;
- 3) статизм S = 10 %;
- 4) отсутствует генераторный режим и рекуперация;
- 5) $K_{cx} = 2.34$;
- 6) $f_{nped.np} = 500 \ \Gamma$ ц;
- 7) область применения до 100 кВт;
- 8) нагрузка M_c = const.

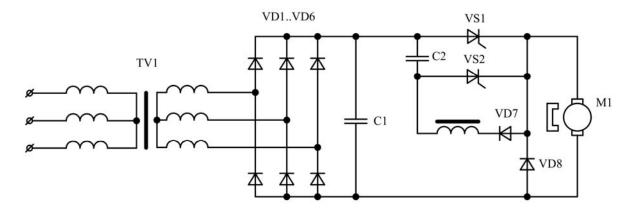


Рисунок 5 – Схема широтно-импульсного управления тиристорная

Основные характеристики, определяющие применение (см. рисунок 6):

- 1) реверсивный;
- 2) диапазон D = 1000;
- 3) статизм S = 5 %;
- 4) $K_{cx} = 0.9$;
- 5) $f_{nped.np} = 1000 \Gamma$ ц;
- 6) область применения -3...5 кВт;
- 7) нагрузка $M_c = \text{const}$,
- 8) отсутствует генераторный режим и рекуперация.

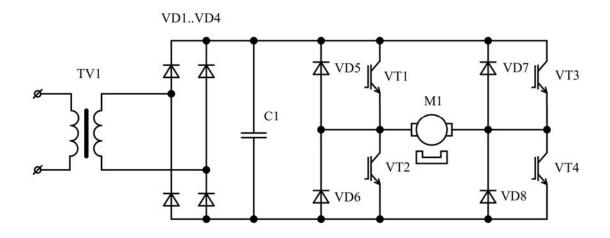


Рисунок 6 – Схема широтно-импульсного управления – транзисторная, реверсивная

При необходимости обеспечить регулирование частоты вращения электродвигателей постоянного тока с нагрузкой постоянной мощности ($P_c = \text{const}$), в зависимости от заданного диапазона регулирования следует выбирать специальные электродвигатели с регулированием или только в цепи возбуждения, или в цепи якоря и возбуждения, при этом мощность электродвигателя должна быть увеличена, или, при широком диапазоне регулирования — в цепи якоря, возбуждения и с применением механической коробки передач.

3.2 Для электроприводов переменного тока с фазовым регулированием напряжения в цепи статора асинхронного электродвигателя

Основные характеристики, определяющие применение (см. рисунок 7):

- 1) при наличии контакторного переключения порядка чередования фаз реверсивный;
- 2) диапазон D = 0,3...3. При этом мощность стандартного электродвигателя с повышенным скольжением должна быть увеличена [4, 6];
 - 3) статизм (с применением ООСС) S = 10 %;
 - 4) $f_{nped.np} = 50 \Gamma$ ц;
 - 5) область применения до 15 кВт;
 - 6) нагрузка $M_c = k\omega^2$;

7) без генераторного режима и рекуперации при работе на регулировочных характеристиках.

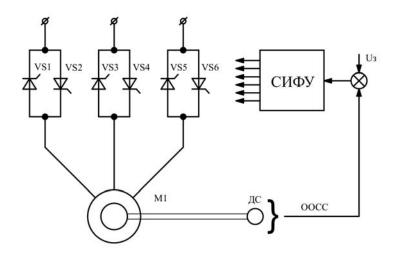


Рисунок 7 – Схема фазового управления тиристорная

3.3 Для электроприводов переменного тока с частотным регулированием

Основные характеристики, определяющие применение (см. рисунок 8):

- 1) реверсивный;
- 2) диапазон (при условии формирования первой гармоники тока) D = 10000;
- 3) статизм S = 1 %;
- 4) нагрузка $M_c = \text{const}$; $M_c = k\omega^2$; $P_c = \text{const}$ (с редуктором);
- 5) $K_{cx} = 2.34$;
- $(6) f_{nped.np}$ (зависит от частоты) до 150 Гц;
- 7) область применения -1...400 кВт;
- 8) без генераторного режима и рекуперации. Для обеспечения указанных режимов необходимо установить противопараллельную группу тиристоров в блоке УВ;
- 9) напряжение регулируется в блоке УВ, частота и формирование первой гармоники тока в блоке АИ.

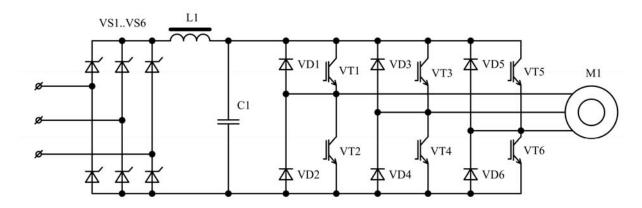


Рисунок 8 – Тиристорно-транзисторная схема

Основные характеристики, определяющие применение (см. рисунок 9):

- 1) реверсивный;
- 2) диапазон D = 8...10;
- 3) статизм S = 20 %, с OOCC 10 %;
- 4) при применении противопараллельного моста в УВ обеспечивает генераторный режим и рекуперацию;
 - 5) $K_{cx} = 2,34$;
 - 6) $f_{nped.np}$ (зависит от частоты) = 7,5...150 Гц;
 - 7) область применения 10...20000 кВт;
 - 8) нагрузка $M_c = \text{const}$; $M_c = k\omega^2$; $P_c = \text{const}$ (с редуктором).

Основные характеристики, определяющие применение (см. рисунок 10):

- 1) реверсивный;
- 2) диапазон (при формировании первой гармоники тока) D = 10000;
- 3) статизм S = 1 %;
- 4) нагрузка $M_c = \mathrm{const}; M_c = k\omega^2; P_c = \mathrm{const}$ (с редуктором);
- 5) $K_{cx} = 2.34$;
- 6) $f_{npe\partial.np}$ (зависит от частоты) до 300 Гц;
- 7) область применения 0,25...400 кВт;
- 8) без генераторного режима и рекуперации;
- 9) напряжение, форма тока и частота регулируются в АИ.

После выбора силовой схемы преобразователя составляется функциональная схема управления электроприводом, причем оптимизация динамических свойств электропривода должна обеспечиваться структурой подчиненного регулирования. В функциональную схему должны также войти блоки и датчики, определенные заданием на курсовую работу.

На базе разработанных типовых структур блоков (элементов) электропривода составляется структурная схема, позволяющая реализовать его заданные статические и динамические характеристики.

На основе знаний передаточной функции электродвигателя определяются его предельные возможности по полосе пропускания спектра частот. При этом предельная частота двигателя $\Omega_{np.\partial.}$, соответствующая предельной полосе пропускания спектра частот, определяется из выражения для АЧХ по формуле

$$K(\Omega_{np.o}) = \frac{1}{\sqrt{2}} K(\Omega_0), \qquad (1)$$

где $K(\Omega_0)$, $K(\Omega_{np,\partial})$ — модули АЧХ соответственно для нулевой частоты $\Omega_0=0$ и предельной $\Omega_{np,\partial}$.

В указанной формуле постоянные времени системы «двигатель – нагрузка (механизм)» для общепромышленных двигателей определяются следующим образом.



Рисунок 9 – Тиристорная схема

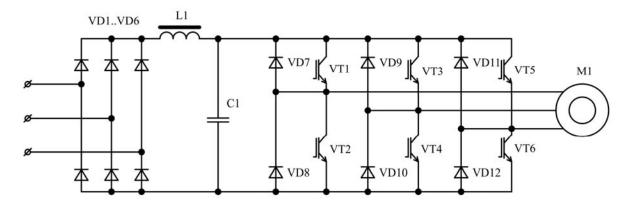


Рисунок 10 – Диодно-транзисторная схема

Для двигателей постоянного тока:

— электромагнитная постоянная T_{9} — из справочника или по формуле

$$T_{9} = \frac{L_{g}}{R_{g}},\tag{2}$$

где

$$L_{_{\mathcal{A}}} = 0.3 \frac{U_{_{_{\mathcal{H},\partial}}}}{P_{_{n}} \omega_{_{n}} I_{_{_{\mathcal{H}}}}}; \tag{3}$$

$$R_{\scriptscriptstyle g} = \frac{1}{2} \frac{U_{\scriptscriptstyle H.\partial}}{I_{\scriptscriptstyle H}} (1 - \eta_{\scriptscriptstyle H}), \qquad (4)$$

где $U_{H,\partial}$ – номинальное напряжение двигателя, B;

 I_{H} – номинальный ток двигателя, A;

 ω_{H} – номинальная частота вращения, 1/c;

 P_n – число пар полюсов;

 η_{H} – номинальное значение КПД;

- электромеханическая постоянная

$$T_{M} = \frac{J_{\Sigma}}{\beta} = \frac{J_{\Sigma} R_{s} \omega_{0}^{2}}{U_{\mu \alpha M}^{2}}, \tag{5}$$

где J_{Σ} — приведенный к валу ротора суммарный момент инерции системы «двигатель — механизм», $J_{\Sigma} = J_p + J'_{\textit{mex}}$.

Для двигателей переменного тока можно принять передаточную функцию, описываемую апериодическим звеном первого порядка с электромеханической постоянной:

$$T_{M} = \frac{J_{\Sigma} \omega_{0} S_{K}}{2M_{K}}, \tag{6}$$

где S_{κ} , M_{κ} — критическое скольжение и критический момент двигателя соответственно.

В специальных быстродействующих (малоинерционных и высокомоментных) двигателях постоянного и переменного тока полоса пропускания приводится в технических характеристиках на двигатель.

Для шаговых электродвигателей за предельную частоту $\Omega_{np.\partial}$ принимается наибольшая управляющая частота или рассчитывается по формуле

$$\Omega_{np.\partial} = m_{\kappa} p_n \frac{\Omega_{\text{max}}}{2\pi}, \tag{7}$$

где m_{κ} – число фаз;

 p_n — число полюсов ротора;

 Ω_{max} – частота приемистости, 1/с.

На базе типовых, приведенных в литературе схем блоков элементов и их конструкций разрабатываются определенные заданием схемы электрические принципиальные блоков (элементов) электропривода или их сборочные чертежи, дается описание состава и принцип действия блоков (элементов), их схем и конструкций.

Производится расчет и выбор элементов, входящих в разрабатываемые блоки электропривода, и составляется на них перечень элементов или спецификации.

В разрабатываемых блоках (элементах) электропривода по указанию преподавателя определяется пять контрольных точек и составляются графики напряжений в этих точках.

Курсовая работа заканчивается разделом «Заключение», где анализируются результаты проектирования. Сравнивается разработанный электропривод с аналогичными стандартными по техническим параметрам, выходным характеристикам. Отмечаются, с позиции исполнителя, недостатки разрабатываемого электропривода.

Список литературы составляется в соответствии с ГОСТ 7.1–2003 с указанием авторов, названия книги, страниц, откуда взята информация, издательства, года издания.

Список литературы

- 1 **Марченко, А. Л.** Электротехника и электроника: учебник: в 2 т. Т. 1: Электротехника / А. Л. Марченко, Ю. Ф. Опадчий. Москва: ИНФРА-М, 2021. 574 с.
- 2 **Москаленко, В. В.** Электрический привод: учебник / В. В. Москаленко. Москва: ИНФРА-М, 2021. 364 с.
- 3 **Прохоров, В. А.** Полупроводниковые преобразователи электрической энергии: учебное пособие / В. А. Прохоров. Москва: ИНФРА-М, 2021. 315 с.