DOI: 10.53078/20778481_2022_2_23

УДК 621.9.047:669:538.8

М. А. Рабыко, В. М. Шеменков, А. Н. Елисеева

СТРУКТУРНО-ФАЗОВОЕ МОДИФИЦИРОВАНИЕ ШТАМПОВЫХ СТАЛЕЙ ОБРАБОТКОЙ ТЛЕЮЩИМ РАЗРЯДОМ В МАГНИТНОМ ПОЛЕ

M. A. Rabyko, V. M. Shemenkov, A. N. Eliseeva

STRUCTURAL PHASE MODIFICATION OF DIE STEELS BY GLOW DISCHARGE TREATMENT IN THE MAGNETIC FIELD

Аннотация

Представлены результаты исследования структуры, фазового состава и глубины модифицированного слоя инструментальных штамповых сталей 4Х4ВМФС и Х12МФ промышленной плавки после непосредственной классической термической обработки и последующей обработки при различных энергетических характеристиках тлеющего разряда в магнитном поле.

Ключевые слова:

тлеющий разряд, структура, фазовый состав, магнитное поле, модифицирующая обработка, поверхностный слой, сталь.

Для цитирования:

Рабыко, М. А. Структурно-фазовое модифицирование штамповых сталей обработкой тлеющим разрядом в магнитном поле / М. А. Рабыко, В. М. Шеменков, А. Н. Елисеева // Вестник Белорусско-Российского университета. – 2022. – № 2 (75). – С. 23–31.

Abstract

The paper presents the results of a research into the structure, phase composition and depth of a modified layer of $4X4BM\Phi C$ and X12MF tool die steels of industrial melting after direct classical heat treatment and subsequent processing at various energy characteristics of a glow discharge in the magnetic field.

Keywords:

glow discharge, structure, phase composition, magnetic field, modifying treatment, surface layer, steel. **For citation**:

Rabyko, M. A. Structural phase modification of die steels by glow discharge treatment in the magnetic field / M. A. Rabyko, V. M. Shemenkov, A. N. Eliseeva // The Belarusian-Russian university herald. $-2022. - N \ge 2$ (75). -P. 23-31.

Введение

Штамповая оснастка, используемая для придания телу или объекту необходимой формы и размеров, работает в сложных условиях. Несмотря на вид обработки (холодная или горячая), вся оснастка, особенно при обработке изделий из металлов и их сплавов, испытывает колоссальные контактные давления на рабочие поверхности. Указанное воздействие зачастую приводит к поверхностному схватыванию материалов изделия и штампа, вызывая тем самым интенсивный износ активных поверхностей инструментальной оснастки.

Как правило, используемые графитсодержащие, минеральные и силиконовые смазки при всех их положительных эффектах не решают полностью проблему интенсивного износа формообразующих поверхностей штам-

© Рабыко М. А., Шеменков В. М., Елисеева А. Н., 2022

повой оснастки.

Учитывая определяющую роль стоимости штамповой оснастки в себестоимости выпускаемой с ее использованием продукции, на производстве постоянно внедряют технологии, позволяющие повысить ее износостойкость.

В последнее время в практике разработки мероприятий по повышению износостойкости инструментальной оснастки превалируют два основных подхода.

Первый подход связан с разработкой материалов с новыми физикометаллическими свойствами, методами их получения. Как пример, это функционально-градиентные материалы, полученные при помощи послойного синтеза. Однако данный подход характеризуется большими затратами, связанными с получением исходных материалов высокого качества. Кроме этого, он предполагает использование специального технологического оборудования (к примеру, 3D-принтеры).

Второй подход – классический, но вместе с тем не утративший своей перспективности. Он связан с разработкой различных методов создания барьерных поверхностных слоев с повышенными физико-механическими свойствами по сравнению с основным материалом инструментальной оснастки.

В рамках второго подхода отделены способы, основанные на ионноплазменной модификации поверхностных слоев, которые положительно себя зарекомендовали. Неоспоримым преимуществом указанных способов является их универсальность, позволяющая осуществлять обработку не только, к примеру, штамповых сталей, но и всего спектра инструментальных материалов. Кроме этого, способы отличаются относительной дешевизной и хорошей повторяемостью результатов [1].

Как отмечалось в [2–5], использование тлеющего разряда в качестве источника ионизации остаточных газов при модифицирующей обработке различных материалов весьма перспективно и позволяет получить достаточно неплохие результаты.

С точки зрения интереса науки, дальнейшее развитие этого направления может быть связано с разработкой новых подходов к управлению энергетическими характеристиками тлеющего разряда, т. к. данные параметры в большей степени влияют на эффективность процесса модифицирования.

Из практики реализации катодного распыления известно, что на вольтамперную характеристику тлеющего разряда в значительной мере оказывает влияние давление в камере между анодом и катодом, а также внешнее магнитное поле, инициируемое в области катодного падения потенциала разряда.

Кроме этого, плазма вакуумного разряда практически полностью ионизована, и на основании проведенных исследований установлено, что даже слабые магнитные поля (на уровне 0,2 мТл) оказывают существенное влияние на характеристики разряда [6].

Исходя из полученных результатов исследования в данной области был предложен способ упрочнения изделий из металла или сплава, или сверхтвердого материала, сущность которого заключается в том, что изделия размещают на столе-катоде, расположенном в силовых линиях постоянного магнитного поля, и обрабатывают поверхности изделий плазмой тлеющего разряда, возбужденного в вакууме [7].

В качестве источника, создающего прикатодное магнитное поле, в предложенном способе может выступать кольцевая катушка индуктивности, которая позволяет сформировать прикатодное магнитное поле с необходимой магнитной индукцией (рис. 1).

Целью работы являлось изучение влияния модифицирующей обработки тлеющим разрядом с прикатодным магнитным полем на структурные и фазовые превращения, протекающие в поверхностном слое штамповых сталей.

Машиностроение

Рис. 1. Схема установки для реализации процесса

Исследования проводились на высококачественной износостойкой инструментальной штамповой стали 4Х4ВМФС (ДИ-22) и высокохромистой инструментальной полутеплостойкой стали высокой твердости с повышенной износостойкостью Х12МФ. Выбор указанных марок обусловлен заинтересованностью в установлении влияния обработки тлеющим разрядом с прикатодным магнитным полем на инструментальные стали, используемые как для холодной, так и горячей штамповки.

Образцы из исследованных сталей предварительно подвергались классической термической обработке:

– сталь 4Х4ВМФС (ДИ-22) ГОСТ 5950–2000 промышленной плавки. Образцы были подвергнуты закалке в масле с 1130 °С (выдержка 1 ч 30 мин) с последующим отпуском при 550 °С в течение 2 ч;

– сталь X12МФ ГОСТ 5950–2000 промышленной плавки. Образцы были подвергнуты закалке в масле с 970 °С (выдержка 1 ч 30 мин) с последующим отпуском при 180 °С в течение 1,5 ч.

Методика исследования

В работе применялись электронномикроскопический и рентгеноструктурный методы анализа структуры и фазового состава материалов. Для определения твердости поверхностного слоя использовался дюрометрический метод.

Электронно-микроскопический анализ поверхности образцов проводился при помощи сканирующего электронного микроскопа Tescan VEGA 2SBA с применением стандартного детектора вторичных электронов. Подготовка образцов для металлографических исследований осуществлялась по стандартной методике. В качестве реактива для трависпользовался 5-процентный ления раствор азотной кислоты (HNO₃) в спирте (С2Н5ОН). Травление осуществлялось в течение 40...45 с при температуре раствора 343 К [8].

Рентгеноструктурный анализ осуществлялся на автоматизированном рентгеновском комплексе, на базе дифрактометра ДРОН-3М с применением монохроматизированного Со_{ка}-излучения. В качестве кристалла-монохроматора использовали пластину пиролитического графита. Рентгеновская съемка выполнялась при напряжении U = 25 кВ, токе J = 12 мА в режиме сканирования (по точкам) с шагом 0,1 град. При рентгенофазовом анализе продолжительность набора импульсов в каждой точке составляла до 20 с, при этом съемка велась в интервале углов рассеяния 20, равном 40...125 град.

Физическое уширение дифракци-

онных линий определялось методом аппроксимации с помощью программного обеспечения HighScore++ (Panalytical, Нидерланды). В качестве эталона использовался образец отожженной стали 10 ГОСТ 1050–88 [9, 10].

Измерение микротвердости рабочей поверхности образцов проводилось на микротвердомере Zwick Roell ZHV 1М при действии нагрузки 0,98 Н.

Обработка образцов тлеющим разрядом осуществлялась по трем основным режимам, указанным в табл. 1. Время обработки по всем режимам составило 30 мин.

Режим обработки	Напряжение горения тлеющего разряда U, В	Плотность тока J , мА/м ²	Магнитная индукция прикатод- ного магнитного поля <i>В</i> , мТл
1	1000	0,125	
2	2000	0,250	4060
3	3000	0,375	

Табл. 1. Режимы обработки образцов в тлеющем разряде

Результаты исследования и их обсуждение

Результаты металлографического анализа поверхностного слоя образцов из стали 4Х4ВМФС до обработки указывают на то, что структура стали соответствует классической мартенситной структуре с карбидными включениями (рис. 2, *a*).

Обработка тлеющим разрядом приводит к измельчению и перераспределению карбидной фазы в поверхностном слое глубиной до 70 мкм (рис. 2, *б*-*г*). Наиболее ярко этот эффект наблюдается при обработке по режимам 1 и 2.

На основании рентгеноструктурного анализа установлено, что в исходном состоянии сталь содержит мартенсит (α -Fe), остаточный аустенит (γ -Fe) и незначительное количество карбида хрома Cr₂₃C₆ (рис. 3).

Параметр кристаллической решетки α-фазы (табл. 2) существенно превышает параметр решетки феррита вследствие присутствия атомов углерода в междоузлиях объемно-центрированной кубической решетки мартенситной фазы, что указывает на формирование пересыщенного твердого раствора углерода и легирующих элементов в мартенсите (α-Fe).

Уменьшение физического уширения дифракционных линий (220) после обработки свидетельствует о снижении плотности дефектов кристаллического строения. Особенно ярко эта картина наблюдается при обработке стали по режиму 1, где, помимо уменьшения уширения дифракционных линий (220), такая же тенденция прослеживается и с дифракционной линией (110).

Рис. 2. Структура поверхностного слоя образцов из стали 4X4BMФС: *а* – в состоянии поставки; *б* – после обработки по режиму 1; *в* – после обработки по режиму 2; *г* – после обработки по режиму 3

Табл. 2. Фазовый состав, количество остаточного аустенита *A*_{ocm}, параметр решетки *a*, физическое уширение β дифракционных линий и плотность дислокаций ρ стали 4Х4ВМФС

Образец	Фазовый состав	$A_{ocm}, \%$	<i>α</i> _{α-Fe} , нм		β ₁₁₀ ,	β ₂₂₀ ,	р, см ⁻² ,
(режим обработки)			Эксперимент	Эталон [9]	10 ⁻³ рад	10 ⁻³ рад	×10 ¹²
Исходный	α -Fe, γ -Fe, Cr ₂₃ C ₆	4,2	0,2878		7,9946	48,3751	3,22
Режим 1	α -Fe, γ -Fe, Cr ₂₃ C ₆	4,1	0,2877	0 28664	7,2771	37,4280	1,92
Режим 2	α -Fe, γ -Fe, Cr ₂₃ C ₆	4,1	0,2876	0,28004	7,4437	42,3989	4,94
Режим 3	α -Fe, γ -Fe, Cr ₂₃ C ₆	4,0	0,2877		8,2766	40,0274	4,41

В совокупности со снижением плотности дислокаций, определенной по линии (220), данный эффект может свидетельствовать об уменьшении напряжений в стали, вызванном протеканием процесса отпуска при ее обработке тлеющим разрядом.

На основании металлографического анализа поверхностного слоя стали X12MФ установлено, что структура стали состоит из мартенсита и избыточных карбидов (рис. 4, *a*). Исходя из особенностей производства высокохромистой инструментальной полутеплостойкой стали высокой твердости с повышенной износостойкостью видно, что входящий в ее состав хром приводит к получению неоднородностей, выражающихся в образовании полосчатых структур, ориентированных в направлении деформации.

Обработка стали X12MФ тлеющим разрядом в прикатодном магнитном поле приводит к измельчению и перераспределению карбидной фазы в поверхностном слое глубиной до 80 мкм (рис. 4, δ – ϵ). Также наблюдается изменение формы карбидных включений с пластинчатой на сферическую.

Рентгеноструктурный анализ выявил, что в исходном состоянии фазовый состав стали X12MФ включает в себя мартенсит (α -Fe), остаточный аустенит (γ -Fe) и карбиды Cr7C3, Fe3C (рис. 5). Параметр решетки мартенсита (α -Fe) существенно превышает параметр решетки феррита вследствие присутствия в ней большого количества легирующих элементов (табл. 3).

Рис. 3. Фрагменты рентгеновских дифрактограмм образцов из стали 4X4BMФС в исходном состоянии и после обработки тлеющим разрядом с различными режимами

Рис. 4. Структура стали X12МФ: *а* – в состоянии поставки; *б* – после обработки по режиму 1; *в* – после обработки по режиму 2; *г* – после обработки по режиму 3

Образец	Фазовый состав	A _{ocm} , %	$a_{\alpha-\mathrm{Fe}},\mathrm{HM}$				
(режим обработки)			Эксперимент	Эталон [9]	β ₁₁₀ , 10 ⁻³ рад	β ₂₂₀ , 10 ⁻³ рад	ρ, см ⁻² , ×10 ¹²
Исходный	α-Fe, γ-Fe, Cr ₇ C ₃ , Fe ₃ C	17,0	0,2874		6,8172	38,2383	2,00
Режим 1	α-Fe, γ-Fe, Cr ₇ C ₃ , Fe ₃ C	9,7	0,2877	0 29664	11,8842	44,0573	2,67
Режим 2	α-Fe, γ-Fe, Cr ₇ C ₃ , Fe ₃ C	13,1	0,2876	0,28004	9,4168	39,4680	4,27
Режим 3	α-Fe, γ-Fe, Cr ₇ C ₃ , Fe ₃ C	12,5	0,2877		10,4655	39,1005	4,20

Табл. 3. Фазовый состав, количество остаточного аустенита *A*_{ocm}, параметр решетки *a*, физическое уширение β дифракционных линий и плотность дислокаций ρ стали X12MΦ

Физическое уширение дифракционных линий от мартенситной фазы имеет достаточно высокие значения (38,24 · 10⁻³ рад) (см. табл. 2), что может быть обусловлено высокой плотностью дефектов кристаллического строения, что является характерным для мартенсита в сталях.

Содержание карбидной фазы после обработки по режимам 2 и 3 снижается по сравнению с исходным состоянием. Такое понижение может быть связано с выделением в процессе обработки из твердого раствора легирующих элементов и образованием ими карбидов, в результате чего происходит превращение γ -Fe $\rightarrow \alpha$ -Fe.

После всех режимов обработки регистрируется существенное снижение в стали остаточного аустенита. Максимальное понижение количества остаточного аустенита регистрируется после обработки стали по режиму 1.

Обработка тлеющим разрядом в магнитном поле приводит к увеличению уширения дифракционных линий. Наиболее ярко выраженное возрастание уширения линий α-Fe обнаружено после обработки по режиму 1. Максимальное количество дислокаций регистрируется после обработки по режимам 2 и 3.

20, град

Рис. 5. Фрагменты дифрактограмм стали X12МФ до и после модифицирующей обработки в тлеющем разряде с различными параметрами горения

Выводы

Обработка образцов из стали 4Х4ВМФС приводит к измельчению и перераспределению карбидной фазы, снижению плотности дефектов кристаллического строения в поверхностном слое глубиной до 70 мкм. Обработка образцов из стали X12MФ приводит к измельчению и перераспределению карбидной фазы, снижению остаточного аустенита и протеканию полиморфного превращения γ -Fe $\rightarrow \alpha$ -Fe в поверхностном слое глубиной до 80 мкм.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. Структурно-фазовое модифицирование инструментальных материалов тлеющим разрядом: монография / В. М. Шеменков [и др.]; под общ. ред. В. М. Шеменкова. – Могилев: Белорус.-Рос. ун-т, 2017. – 270 с.: ил.

2. Влияние обработки тлеющим разрядом на структуру, фазовый состав и износостойкость сталей, подвергнутых химико-термической обработке / В. М. Шеменков [и др.] // Вестн. Белорус.-Рос. ун-та. – 2016. – № 1. – С. 100–113.

3. Шеменков, В. М. Влияние обработки тлеющим разрядом на структуру, фазовый состав и твердость износостойких защитных покрытий на основе титана / В. М. Шеменков, М. А. Белая, А. Л. Шеменкова // Вестн. Белорус.-Рос. ун-та. – 2017. – № 4. – С. 118–127.

4. Шеменков, В. М. Влияние обработки тлеющим разрядом на структуру, фазовый состав и износостойкость инструментальных штамповых сталей / В. М. Шеменков, М. А. Белая, А. Л. Шеменкова, О. В. Обидина // Вестн. Белорус.-Рос. ун-та. – 2018. – № 4. – С. 28–38.

5. Белая, М. А. Влияние технологических факторов обработки тлеющим разрядом на твердость и износостойкость сталей 5ХЗВЗМФС и Х12 / М. А. Белая // Новые материалы и технологии: материалы V Рос.-Казахстанской молодежной науч.-техн. конф. – Барнаул: Алтайский гос. ун-т, 2017. – С. 42–48.

6. Духопельников, Д. В. Влияние магнитного поля на вольт-амперную характеристику вакуумного дугового разряда / Д. В. Духопельников, Д. В. Кириллов // Наука и Образование. – 2015. – № 11. – С. 124–135.

7. Способ упрочнения изделий из металла, или сплава, или сверхтвердого материала: пат. ВУ 19126 / В. М. Шеменков, М. А. Белая. – Опубл. 30.04.2015.

8. Анисович, А. Г. Практика металлографического исследования материалов: монография / А. Г. Анисович, И. Н. Румянцева. – Минск: Беларус. навука, 2013. – 221 с.: ил.

9. Горелик, С. С. Рентгенографический и электронно-оптический анализ : учебное пособие для вузов / С. С. Горелик, Ю. А. Скаков, Л. Н. Расторгуев. – 4-е изд., перераб. и доп. – Москва : МИСИС, 2002. – 360 с. : ил.

10. Лысак, Л. И. Определение истинной ширины рентгеновских интерференционных линий с применением стандартного образца / Л. И. Лысак // Вопросы физики металлов и металловедения: сб. тр. – Киев, 1955. – № 6. – С. 40–53.

Статья сдана в редакцию 17 мая 2022 года

Марина Александровна Рабыко, ст. преподаватель, Белорусско-Российский университет. E-mail: belay-marina@yandex.by.

Анна Николаевна Елисеева, ассистент, Белорусско-Российский университет. E-mail: anuta994@mail.ru. Владимир Михайлович Шеменков, канд. техн. наук, доц., Белорусско-Российский университет.

E-mail: VShemenkov@yandex.ru.

Marina Aleksandrovna Rabyko, senior lecturer, Belarusian-Russian University. E-mail: Belay-marina@ yandex.by.

Vladimir Mikhailovich Shemenkov, PhD (Engineering), Associate Prof., Belarusian-Russian University. E-mail: VShemenkov@yandex.ru.

Anna Nikolaevna Eliseeva, assistant lecturer, Belarusian-Russian University. E-mail: anuta994@mail.ru.