УДК 621.179÷534.1

ДИФРАГИРУЮЩИЕ ПОДПОВЕРХНОСТНЫЕ ВОЛНЫ ДЛЯ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ТРЕЩИН

А.Р. БАЕВ, М.В. АСАДЧАЯ, Г.Е. КОНОВАЛОВ, Н.Н. ГИЛЬ ГНУ «ИНСТИТУТ ПРИКЛАДНОЙ ФИЗИКИ НАН Беларуси» Минск, Беларусь

Во многих случаях применение ультразвуковых методов для определения глубины H и наклона α трещин наиболее эффективно по сравнению с радиографическими, электропотенциальными, электромагнитными, имеющими ряд ограничений, обусловленных свойствами контролируемого материала (электрическими, магнитными, структурными), наличием защитного покрытия, громоздкостью и сложностью используемой аппаратуры и другими факторами [1]. Несмотря на широкий спектр работ, посвященных применению ультразвуковых методов, основанных на изменении амплитуды поверхностных и объемных волн, измеряемых в теневом или эхо-режимах, а также — при дифрагировании подповерхностных ультразвуковых волн (УВ), проблемы измерения параметров "малоглубинных" трещин (H<1-2 мм), наклонных трещин, а также трещин, расположенных под защитным слоем, остаются нерешенными.

В настоящей работе на основе представлений лучевой акустики проведен качественный анализ акустического тракта измерительной системы для некоторых схем прозвучивания объектов с использованием как конструкций традиционных пьезопреобразователей (ПЭП), так и с применением малоапертурных ПЭП (или МАП). Рассмотрена предложенная "компенсационная" схема измерений, заключающаяся в том, что симметрично устья трещины (y=0) устанавливают два наклонных ПЭП, выполненных с возможностью излучения (приема) как продольных, так и поперечных мод. Причем каждый имеет общую точку выхода акустического луча. При измерении сначала ПЭП №1 является источником продольной и поперечной моды, а ПЭП №2 — приемником продольной моды. Затем прозвучивание объекта производится в обратном направлении. Для наиболее простого случая система уравнений, дающая связь между H и α , имеет вид

$$Aa_i + Bb_i = c_i$$
, где $i = (1-3)$, $A = [H^2 + (y-Htg\alpha)^2]^{0,5}$, $B = [H^2 + (y+Htg\alpha)^2]^{0,5}$, $a_1 = a_2 = b_2 = b_3 = 1$; $b_1 = a_3 = n_t = C_t/C_t$; $c_1 = C_t/t_1$; $c_2 = C_t/t_2$; $c_3 = C_t/t_3$.

Наличие третьего уравнения позволяет повысить точность расчета H и α , поскольку при этом учитывается влияние акустического контакта и положения точки выхода ПЭП на измеряемый временной интервал.

В случае реализации второго способа измерений, предназначенного для определения "малоглубинных" трещин, используются малоапертурные

преобразователи (МАП), создающие акустический контакт малой площади. Так же, как и в предыдущем варианте, в качестве излучателя УВ используются наклонные ПЭП, осуществляющие двустороннее прозвучивание объекта. При этом максимальная точность измерений достигается при использовании источников поперечной моды и расположении МАП с противоположных сторон от устья трещины и на ближайших к ней расстояниях x_1 и x_2 . На рис. 1 представлены характерные расчетные и экспериментальные зависимости временного интервала t_{21} , измеренного между приемными МАП, при изменении направления прозвучивания УВ и для различных углов наклона трещин. Как видно, если трещина наклонена в сторону излучающего ПЭП, то функция t_{21} представляет собой монотонно возрастающую зависимость от x_2 . Если же наклон трещины в обратную сторону, то зависимость $t_{21}(x_2)$ имеет минимум в окрестности $x_2=Htg\alpha$. Этот факт используется в методической разработке и позволяет на практике существенно упростить измерительную процедуру. Применение разработки позволяет на практике производить оценку глубины коррозионного поражения объектов теплоэнергетического хозяйства при $H \sim 0.5-1$ мм.

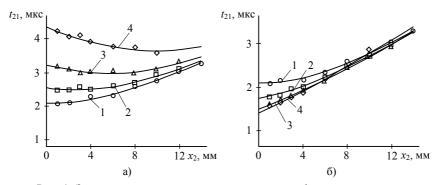


Рис. 1. Зависимость разницы времени прихода дифрагирующей волны от положения приемного МАП для разных направлений прозвучивания. Угол наклона трещины α =0° (1); 15° (2); 30° (3); 45° (4)

Результаты настоящей работы представляют прикладные аспекты выполняемого проекта БРФФИ Т09-189.

СПИСОК ЛИТЕРАТУРЫ

1. Неразрушающий контроль: справ. в 8 т. / Под общ. ред. В. В. Клюева. – М. : Машиностроение, 2006. – Т. 3. – 864 с.

E-mail: <u>baev@iaph.bas-net.by</u>