УДК 620.179.16 ВЛИЯНИЕ ГЛУБИНЫ УПРОЧНЕННОГО СЛОЯ НА АМПЛИТУДНЫЕ ПАРАМЕТРЫ ПОВЕРХНОСТНОЙ И ПОДПОВЕРХНОСТНОЙ ВОЛН

*О. С. СЕРГЕЕВА, Г. Е. КОНОВАЛОВ, М. В. АСАДЧАЯ, Н. В. ЛЕВКОВИЧ *Государственное учреждение высшего профессионального образования «БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ»

Государственное научное учреждение «ИНСТИТУТ ПРИКЛАДНОЙ ФИЗИКИ НАН Беларуси» Могилев, Минск, Беларусь

Разработка и внедрение в промышленное производство эффективных методов и средств неразрушающего контроля (НК), качества упрочнения поверхностного слоя (УПС) металла (закалкой ТВЧ, цементацией, химикотермической обработкой и др.) является важной научно-технической задачей. Объекты с УПС представляют собой среды с плавно изменяющимися по высоте слоя z=0-h физико-механическими свойствами, такими как модуль Юнга E, твердость B, износостойкость и др. Глубина слоя h и указанные свойства хорошо коррелируют с акустическими параметрами скоростью УЗК, удельным акустическим сопротивлением, затуханием волны.

В частотном диапазоне 1 – 10 МГц на образцах, с различной глубиной ТВЧ слоя, получены экспериментальные упрочненного закалкой зависимости амплитуды волны Рэлея (ПАВ) (A_R) и подповерхностной поперечной волны (A_T) от угла падения волны β , варьируемого в диапазоне, включающем второй критический угол β_2 и оптимальный угол возбуждения ПАВ β_R . Установлено, что угловые зависимости амплитуды поверхностной волны имеют вид, подобный параболе, угол максимума которой возрастает с увеличением глубины упрочненного слоя или безразмерной глубины УПС $h^*=h/\lambda_R$. Подобные закономерности имеют место и для амплитудно-угловой зависимости подповерхностной поперечной волны, но в окрестности критического угла β_2 . Показано, что для повышения точности измерения скорости ПАВ на разных частотах в объектах с УПС необходима дополнительная оптимизация падения УГЛОВ волны, производимая механическим способом либо путем использования ПЭП с фазированной решеткой.

Возможно использование зависимостей $A_R(\beta)$ и $A_T(\beta)$ на разных частотах в качестве дополнительного информационного материала для определения параметров упрочненного слоя. Если же твердость на поверхности объекта с УПС известна, шероховатость поверхности $R_z << \lambda_{\Pi AB}$, а точность установки β не выше $0,1-0,2^{\circ}$, то представляется возможным производить оценку глубины УПС по данным амплитудных зависимостей $A_R(\beta)$, снимаемых в режиме отражения.

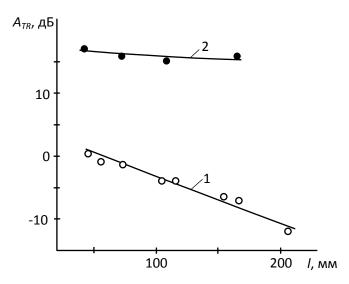


Рис.1. Зависимость отношения амплитуд A_T/A_R от расстояния в режиме отражения от грани образца: безразмерная глубина УПС $h^*=0$ (1); $h^*=2,5$ (2); f=5 МГц, $\beta=58^\circ$

информативного параметра, характеризующего глубину УПС.

В случае, когда $h^*>h^{**}$, наблюдается существенное изменение структуры поля подповерхностной волны, обусловленное явлением рефракции. Исследования (рис. 2), проведенные в режиме отражения на

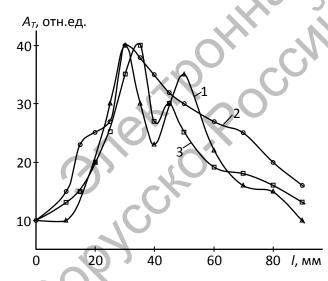


Рис. 2. Зависимость амплитуды поперечной волны от расстояния до отражающей грани образца в слое с $h^*\approx 5$ при варьировании угла падения волны в окрестности критического значения: $\beta = 23^{\circ}$ (1): $\beta = 25.5^{\circ}$ (2): $\beta = 26^{\circ}$ (3)

Установлено, что для угла падения волны β≈β2 и значений глубины слоя $h^* < h^{**}$ зависимости $A_{TR} = A_T / A_R$ длины OT акустической базы имеют квазилинейный ВИД уменьшающимся углом тангенса наклона кривых (рис. 1). В этом случае происходит перераспределение вклада энергии падающей продольной волны в и поперечную поверхностную ослабление причем последней с расстоянием, по мере увеличения глубины УПС, уменьшается вследствие эффекта Угол наклона рефракции. зависимостей $A_{TR}(l)$ и $A_{T}(l)$ по мере роста h^* уменьшается, так что он может использоваться в качестве

частоте 10 МГц с использованием локальной иммерсионной ванны, что уже при *h**≈5 показали, $A_{\mathcal{I}}(l)$ зависимость имеет ряд экстремумов. С одной стороны, это быть использовано тэжом ДЛЯ глубины УПС. оценки коррелирующей с безразмерными координатами положения экстремумов. С другой стороны, очевидно, что если использовать зависимости $A_{T,R}(l)$ при разных h, подобные приведенным на рис.1, то эффекты рефракции существенно затрудняют процесс измерения. Установленное граничное значение глубины УПС, при котором на зависимости $A_T(l)$ уже обнаруживаются экстремумы, составляет $h^{**}\approx 3-3.5$.

Таким образом, амплитудные характеристики несут информацию о состоянии УПС и могут быть использованы для оценки его параметров путем использования достаточно простой методики и средств измерений.