УДК 535.42:534.48 ПОЛЯРИЗАЦИОННЫЕ ОСОБЕННОСТИ АКУСТООПТИЧЕСКОЙ ДИАГНОСТИКИ ПРОДОЛЬНЫХ И СДВИГОВЫХ УЛЬТРАЗВУКОВЫХ ВОЛН В ПЛОСКОПАРАЛЛЕЛЬНОМ СЛОЕ

А.Е. АНИСИМОВА, Г.В. КУЛАК, Т.В. НИКОЛАЕНКО УО «МОЗЫРСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ им. И.П. Шамякина» Мозырь, Беларусь

В работе [1] предложен альтернативный метод акустооптической диагностики ультразвуковых волн. В [2] показано, что несогласованные структуры на основе известных акустооптических (AO) кристаллов теллура (Te), парателлурита (TeO₂), кварца (SiO₂) и др. могут быть использованы для создания нетрадиционных AO устройств, использующих как прошедшие, так и отраженные дифрагированные волны. В настоящей работе исследованы поляризационные и угловые особенности брэгговской AO дифракции в несогласованных структурах из изотропных материалов.

В случае неколлинеарного АО взаимодействия в слое ультразвуковая волна (V3B) распространяется вдоль границ слоя. У3B с вектором смещения $\vec{U} = \vec{U}_0 \exp[i(Kz - \Omega t)]$ ($K = \Omega/\upsilon$, Ω – циклическая частота, υ – фазовая скорость У3B) возбуждается вдоль оси Z и заключена в пространстве между плоскостями x = 0 и x = h в пределах слоя. У3B создает периодическое в пространстве и времени изменение тензора диэлектрической проницаемости $\Delta \hat{\varepsilon}$, которое связано с тензором упругих деформаций \hat{U} и тензором фотоупругих постоянных \hat{p} соотношениями: $\Delta \hat{\varepsilon} = -\varepsilon_2^2 \hat{p} : \hat{U}$, где ε_2 – диэлектрическая проницаемость плоскопараллельного слоя.

Предположим, что плоская световая волна с частотой $\omega >> \Omega$ и волновым вектором $\vec{k}_1 = \vec{e}_x k_{1x} + \vec{e}_y k_{1y}$ ($\vec{e}_x || OX$, $\vec{e}_y || OY - единичные векторы, <math>k_{1x} = kn_1 \cos \varphi_1, k_{1z} = kn_1 \sin \varphi_1, (k = \omega/c, n_1 = \sqrt{\varepsilon_1})$ имеет линейную поляризацию с азимутом ψ_0 по отношению к плоскости падения XZ и падает на грань x=0 под углом φ_1 к её нормали. Угол преломления $\varphi_2 = \arcsin(\sqrt{\varepsilon_1/\varepsilon_2} \sin \varphi_1)$ и равен углу Брэгга $\varphi_2 = \varphi_5 = \arcsin(K/2k_2)$, где $k_2 = kn_2 (n_2 = \sqrt{\varepsilon_2})$.

Показано, что поворот плоскости поляризации дифрагированной волны (рис.1) определяется анизотропией фотоупругости АО взаимодействия в слое и особенностями френелевского отражения *s*- и *p*- поляризованного света на границах слоя. При анизотропной дифракции на сдвиговых УЗВ отраженные и прошедшие дифрагированные световые волны имеют ортогональные поляризации для нулевого и первого дифракционных порядков. Численные расчеты проводились для плоскопараллельного слоя из плавленого кварца (*SiO*₂) при дифракции излучения *He-Ne* - лазера с произвольным азимутом поляризации ψ_0 и длиной волны $\lambda_0=0,6328$ мкм. Предполагалось, что слой материала граничит с воздухом. Амплитуда тензора деформаций $U = (2I_a / \rho \upsilon^3)^{1/2}$, где I_a – интенсивность УЗВ, υ – фазовая скорость продольной УЗВ, ρ - плотность кристалла.

Для падающей световой волны с азимутом поляризации ψ_0 происходит поворот плоскости поляризации дифрагированной волны нулевого и первого порядков на углы: $\psi_{0,1}^r = arctg(|r_{0,1s}/r_{0,1p}|tg\psi_0)$ и $\psi_{0,1}^t = arctg(|t_{0,1s}/t_{0,1p}|tg\psi_0)$, где $r_{0,1s}(r_{0,1p})$ – амплитудные коэффициенты отражения дифрагированных волн *s*- (*p*-) поляризации, $t_{0,1s}(t_{0,1p})$ – соответствующие коэффициенты пропускания.

Рис. 1. Зависимость азимута поляризации отраженной (ψ_1^r) и прошедшей (ψ_1^t) дифрагированных волн от амплитуды деформации U и толщины слоя $h(\psi_0 = 45 \text{ град.}, \vec{U} \parallel OZ)$.

Из полученных выражений для азимутов поляризации ψ_1^r , ψ_1^t и рис. 1 следует, что характеристики УЗВ, распространяющихся в плоскопараллельном слое, могут быть определены исследованием поляризационных зависимостей дифрагированного на них света.

СПИСОК ЛИТЕРАТУРЫ

1. Leroy O., Claeys J.M. Acousto – Optic Method for Nondestructive Testing // Journal of Nondestructive Evaluation. 1984. V. 4, N 1. p. 43 – 50.

2. **Кулак, Г. В**. Дифракция света на ультразвуке в условиях френелевского отражения / Г. В. Кулак // Опт. и спектр. – 1994. – Т. 76, № 6. – С. 1027–1029.

E-mail: g.kulak@mail.ru