ПРИБОРОСТРОЕНИЕ

DOI: 10.53078/20778481_2022_3_126

УДК 620.179.14

И. В. Трепачкин, В. А. Третьякова, В. А. Новиков

ФОРМИРОВАНИЕ ПОЛЯ ДЕФЕКТА ПРИ УМЕНЬШЕНИИ НАПРЯЖЕННОСТИ НАМАГНИЧИВАЮЩЕГО ПОЛЯ ВНУТРИ ОБЪЕКТА

I. V. Trepachkin, V. A. Tretyakova, V. A. Novikov

DEFECT FIELD FORMATION WITH A DECREASE IN MAGNETIZING FIELD STRENGTH INSIDE THE OBJECT

Аннотация

Разработана методика приближенного расчета, получены математические выражения и результаты расчета тангенциальной составляющей поля дефекта при уменьшении внешнего поля внутри ферромагнитного объекта по линейному закону. Установлены закономерности изменения полей дефектов при изменении их параметров.

Ключевые слова:

дефекты, дефектоскопия, намагничивающее поле, поле дефекта, метод «магнитных зарядов», ферромагнитные объекты.

Для цитирования:

Трепачкин, И. В. Формирование поля дефекта при уменьшении напряженности намагничивающего поля внутри объекта / И. В. Трепачкин, В. А. Третьякова, В. А. Новиков // Вестник Белорусско-Российского университета. – 2022. – № 3 (76). – С. 126–135.

Abstract

The paper presents a developed method of approximate calculation, mathematical expressions and results of calculations of the tangential component of the defect field when the external field inside a ferromagnetic object decreases linearly. Patterns of changes in the defect fields with changing their parameters were established.

Keywords:

defects, defectoscopy, magnetizing fields, defect field, method of magnetic charges, ferromagnetic objects.

For citation:

Trepachkin, I. V. Defect field formation with a decrease in magnetizing field strength inside the object / I. V. Trepachkin, V. A. Tretyakova, V. A. Novikov // The Belarusian-Russian university herald. -2022. - N 3 (76). - P. 126–135.

Введение

Для уверенного обнаружения дефектов сплошности в ферромагнитных объектах магнитными методами контроля необходимо иметь достаточно полную информацию о распределении магнитных полей рассеяния над поверхностью намагниченного объекта в местах нахождения дефектов. В [1] методом «магнитных зарядов» выполнен расчет поля поверхностного дефекта в

© Трепачкин И. В., Третьякова В. А., Новиков В. А., 2022

виде протяженной канавки с параллельными боковыми гранями, расположенными перпендикулярно поверхности объекта. Расчет выполнен для случая, когда контролируемый ферромагнитный объект намагничен однородно, а вектор напряженности внешнего поля направлен перпендикулярно боковым граням дефекта. Известно, что такие условия выполняются, когда толщина полюсов намагничивающего устройства в 2-3 раза превышает толщину стенки объекта, а его ширина равна длине полюсов намагничивающего устройства [2, 3]. Если же эти условия не выполняются, а также если намагничивание объекта производят перемещаемым постоянным магнитом [4, 5] или импульсным полем [3], то внешнее магнитное поле убывает от поверхности вглубь объекта. По этой причине задача расчета формирования поля дефекта при

уменьшении напряженности намагничивающего поля внутри объекта является актуальной.

Основная часть

В [1] разработана методика и выполнен расчет поля поверхностного дефекта методом «магнитных зарядов». В работе поле протяженного дефекта, возникающее при намагничивании объекта, аппроксимировано полем ленточного магнитного диполя. Показано, что для ленточного диполя шириной 2bи глубиной *h* (рис. 1) необходимо учитывать «магнитный заряд» dQ, расположенный по элементу поверхности dS_n грани с поверхностной плотностью $\sigma(\eta)$:

$$dQ = \sigma(\eta) dS_n, \tag{1}$$

где η меняется в пределах от 0 до *h*.

Рис. 1. К расчету поля ленточного диполя

Получено математическое выражение для тангенциальной составляющей напряженности поля *H*_x поверхностного дефекта при намагничивании объекта постоянным полем для случая равномерного распределения «магнит-

ных зарядов» на поверхностях боковых граней дефекта. Так как поверхностная плотность «магнитных зарядов» σ_n не известна, то обычно определяют

не
$$H_x$$
, а отношение $\frac{H_x}{\sigma_n}$ [1].

$$\frac{H_x}{\sigma_n} = 2\left(\operatorname{arctg}\frac{h(x+b)}{(x+b)^2 + y(y+h)} - \operatorname{arctg}\frac{h(x-b)}{(x-b)^2 + y(y+h)}\right).$$
(2)

Установлено, что $\frac{H_x}{\sigma_n}$ в интервале -b < x < b изменяется монотонно; при переходе через точки ребер A_1 и A_2 $\frac{H_x}{\sigma_n}$ претерпевает конечный скачок разрыва, равный 2π . $\frac{H_x}{\sigma_n}$ по ширине базы с увеличением глубины диполя становится более однородным и для бесконечно глубокого диполя – строго однородным. При переходе через ребра его граней величина скачка $\frac{H_x}{\sigma_n}$ также сохраняется

равной 2л.

При расчете формирования поля рассеяния наружного протяженного дефекта на поверхности объекта для рассматриваемой задачи примем допущение, что напряженность магнитного поля в объекте по мере увеличения глубины убывает по линейному закону, причем на расстоянии 3 мм от поверхности объекта она равна нулю (рис. 2).

Рис. 2. Уменьшение плотности «магнитных зарядов» о по линейному закону на боковых гранях дефекта с увеличением его глубины

При выполнении расчета можно было бы воспользоваться формулой (2), полученной для случая равномерного распределения «магнитных зарядов» на боковых поверхностях граней дефекта (см. рис. 1), с поправкой на линейный характер их убывания с увеличением глубины. Но задача осложняется тем, что ордината у здесь также изменяется. По этой причине не удается свести расчет к решению интегральных выражений. Поэтому нами разработана методика приближенного расчета формирования $\frac{H_x}{\sigma_n}$ ленточного диполя, плотность

магнитных зарядов на гранях которого уменьшается по линейному закону от максимального значения σ_n в верхней его части до нуля на глубине 3 мм (см. рис. 2).

Выполним приближенный расчет, используя формулу (2), разбив глубину *h* диполя на шесть участков, принимая усредненные плотности «магнитных зарядов» σ_{ni} на них по мере увеличения глубины диполя постоянными и равными: $\sigma_1 = \sigma_n$; $\sigma_2 = \frac{5}{6}\sigma_n$; $\sigma_3 = \frac{4}{6}\sigma_n$; $\sigma_4 = \frac{3}{6}\sigma_n$; $\sigma_5 = \frac{2}{6}\sigma_n$; $\sigma_6 = \frac{1}{6}\sigma_n$ (рис. 3). Здесь σ_n – максимальное значение поверхностной плотности «магнит-

ных зарядов», т. е. их величина в тонком поверхностном слое вертикальной грани дефекта. На рис. 3 обозначены плотности «магнитных зарядов» на указанных участках.

Рис. 3. Расчетная модель поля протяженного дефекта при убывании намагничивающего поля в объекте с увеличением расстояния от поверхности объекта: σ₁, σ₂, σ₃, σ₄, σ₅, σ₆ – средние плотности «магнитных зарядов» на отдельных участках

Ординаты *у* для указанных шести случаев: $y_1 = 0$; $y_2 = \frac{1}{2}$ мм; $y_3 = 1$ мм; $y_4 = \frac{3}{2} \cdot$ мм; $y_5 = 2$ мм; $y_6 = \frac{5}{2} \cdot$ мм. Величина *h* во всех случаях определится следующим образом: $h' = \frac{1}{6}h = \frac{1}{2}$ мм.

Тогда

$$\frac{H_{x1}}{\sigma_n} = 2\left(\operatorname{arctg}\frac{0,5(x+b)}{(x+0,6)^2 + y_1(y_1+0,5)} - \operatorname{arctg}\frac{0,5(x-b)}{(x-0,6)^2 + y_1(y_1+0,5)}\right) =$$

$$= 2 \left(\operatorname{arctg} \frac{0, 5(x+b)}{(x+0,6)^2 + 0(0+0,5)} - \operatorname{arctg} \frac{0, 5(x-b)}{(x-0,6)^2 + 0(0+0,5)} \right);$$
(3)

$$\frac{H_{x2}}{\sigma_n} = 2\left(\arctan\frac{0,5(x+b)}{(x+0,6)^2 + y_2(y_2+0,5)} - \arctan\frac{0,5(x-b)}{(x-0,6)^2 + y_2(y_2+0,5)}\right) =$$

$$= 2 \left(\operatorname{arctg} \frac{0,5(x+b)}{(x+0,6)^2 + \frac{1}{2}(\frac{1}{2}+0,5)} - \operatorname{arctg} \frac{0,5(x-b)}{(x-0,6)^2 + \frac{1}{2}(\frac{1}{2}+0,5)} \right);$$
(4)

$$\frac{H_{x3}}{\sigma_n} = 2\left(\arctan\frac{0,5(x+b)}{(x+0,6)^2 + y_3(y_3+0,5)} - \arctan\frac{0,5(x-b)}{(x-0,6)^2 + y_3(y_3+0,5)}\right) = 0$$

$$= 2 \left(\operatorname{arctg} \frac{0, 5(x+b)}{(x+0,6)^2 + 1(1+0,5)} - \operatorname{arctg} \frac{0, 5(x-b)}{(x-0,6)^2 + 1(1+0,5)} \right);$$
(5)

$$\frac{H_{x4}}{\sigma_n} = 2\left(\arctan\frac{0,5(x+b)}{(x+0,6)^2 + y_4(y_4+0,5)} - \arctan\frac{0,5(x-b)}{(x-0,6)^2 + y_4(y_4+0,5)}\right) =$$

$$= 2 \left(\operatorname{arctg} \frac{0,5(x+b)}{(x+0,6)^2 + \frac{3}{2} \left(\frac{3}{2} + 0,5\right)} - \operatorname{arctg} \frac{0,5(x-b)}{(x-0,6)^2 + \frac{3}{2} \left(\frac{3}{2} + 0,5\right)} \right);$$
(6)

$$\frac{H_{x5}}{\sigma_n} = 2 \left(\arctan \frac{0,5(x+b)}{(x+0,6)^2 + y_5(y_5+0,5)} - \arctan \frac{0,5(x-b)}{(x-0,6)^2 + y_5(y_5+0,5)} \right) = 2 \left(\arctan \frac{0,5(x+b)}{(x+0,6)^2 + 2(2+0,5)} - \arctan \frac{0,5(x-b)}{(x-0,6)^2 + 2(2+0,5)} \right);$$
(7)

$$\frac{H_{x6}}{\sigma_n} = 2\left(\arctan\frac{0,5(x+b)}{(x+0,6)^2 + y_6(y_6+0,5)} - \arctan\frac{0,5(x-b)}{(x-0,6)^2 + y_6(y_6+0,5)}\right) =$$

$$= 2 \left(\operatorname{arctg} \frac{0,5(x+b)}{(x+0,6)^2 + \frac{5}{2} \left(\frac{5}{2} + 0,5\right)} - \operatorname{arctg} \frac{0,5(x-b)}{(x-0,6)^2 + \frac{5}{2} \left(\frac{5}{2} + 0,5\right)} \right).$$
(8)

Тогда

$$\frac{H_x}{\sigma_n} = \frac{H_{x1}}{\sigma_n} + \frac{H_{x2}}{\sigma_n} + \frac{H_{x3}}{\sigma_n} + \frac{H_{x4}}{\sigma_n} + \frac{H_{x5}}{\sigma_n} + \frac{H_{x6}}{\sigma_n}.$$
(9)

Расчет влияния высоты h диполя осуществлен по следующим на $\frac{H_x}{\sigma_n}$ поля на поверхности объекта формулам:

$$\frac{H_x}{\sigma_n}(h=1,0 \text{ MM}) = \frac{H_{x1}}{\sigma_n} + \frac{H_{x2}}{\sigma_n};$$
$$\frac{H_x}{\sigma_n}(h=1,5 \text{ MM}) = \frac{H_{x1}}{\sigma_n} + \frac{H_{x2}}{\sigma_n} + \frac{H_{x3}}{\sigma_n};$$
$$\frac{H_x}{\sigma_n}(h=2,0 \text{ MM}) = \frac{H_{x1}}{\sigma_n} + \frac{H_{x2}}{\sigma_n} + \frac{H_{x3}}{\sigma_n} + \frac{H_{x4}}{\sigma_n};$$
$$\frac{H_x}{\sigma_n}(h=2,5 \text{ MM}) = \frac{H_{x1}}{\sigma_n} + \frac{H_{x2}}{\sigma_n} + \frac{H_{x3}}{\sigma_n} + \frac{H_{x4}}{\sigma_n} + \frac{H_{x5}}{\sigma_n}.$$

Результаты расчета показаны на рис. 4.

Из рисунка видно что с ростом высоты ленточного диполя происходит увеличение $\frac{H_x}{\sigma_n}$ (рис. 5). Сравнение кривых $\frac{H_x}{\sigma_n}(x)$ для случаев уменьшения плотности «магнитных зарядов» на гранях диполя с увеличением его глубины и равномерного их распределения при одинаковой высоте ленточного диполя показывает, что максимальные значения

 $\frac{H_x}{\sigma_n}$ в первом случае меньше. То есть

дефекты будут обнаруживаться хуже, что и подтверждается экспериментально.

Чтобы исследовать влияние ширины дефекта на отношение тангенциальной составляющей поля дефекта к максимальной плотности поверхностных зарядов $\frac{H_x}{\sigma_n}$, производили расчет $\frac{H_x}{\sigma_n}$ по формуле $\frac{H_x}{\sigma_n} = \frac{H_{x1}}{\sigma_n} + \frac{H_{x2}}{\sigma_n} + \frac{H_{x3}}{\sigma_n} +$ $+ \frac{H_{x4}}{\sigma_n} + \frac{H_{x5}}{\sigma_n}$ для случаев h = 2,5 мм и ширины диполя 2b = 0.8; 1,0; 1,2;

1,4 мм (рис. 6).

Рис. 5. Изменение $\frac{H_x}{\sigma_n}$ тах поля диполя при неравномерном распределении «магнитных зарядов» σ_n на поверхностях боковых граней ленточного диполя шириной 2b = 1,2 мм в зависимости от его высоты

Рис. 6. Влияние ширины 2*b* ленточного диполя на $\frac{H_x}{\sigma_n}(x)$ на поверхности объекта при h = 2,5 мм: *a* – ширина дефекта 2*b* = 0,8 мм; *б* – 2*b* = 1 мм; *в* – 2*b* = 1,2 мм; *c* – 2*b* = 1,4 мм

Из рис. 7 видно, что с увеличением ширины диполя происходит увеличение $\frac{H_x}{\sigma_n}$ max.

Сравнение кривых $\frac{H_x}{\sigma_n}(x)$ для слу-

чаев уменьшения плотности «магнитных зарядов» на гранях диполя и равномерного их распределения при одинаковой высоте ленточного диполя с увеличением его ширины показывает, что максимальные значения $\frac{H_x}{\sigma_n}$ в пер-

вом случае меньше.

Таким образом, если внешнее магнитное поле убывает от поверхности вглубь ферромагнитного объекта, то поверхностные дефекты в объектах при магнитных методах контроля будут обнаруживаться хуже, чем при однородном намагничивании контролируемых сечений объекта, что и подтверждается экспериментально.

Рис. 7. Изменение $\frac{H_x}{\sigma_n}$ тах поля ленточного диполя при неравномерном распределении «магнитных зарядов» σ_n на поверхности боковых граней в зависимости от ширины магнитного диполя высотой h = 2.5 мм

Заключение

Расчет формирования магнитного поля дефекта на поверхности ферромагнитного объекта выполнен для случая, когда внешнее магнитное поле убывает от поверхности вглубь объекта. Принято допущение, что напряженность магнитного поля в объекте уменьшается с увеличением глубины по линейному закону, причем на расстоянии 3 мм от поверхности она равна нулю. Показано, что при выполнении расчета методом «магнитных зарядов» воспользоваться нельзя известной формулой, полученной для случая равномерного распределения «магнитных

зарядов» на поверхностях боковых граней ленточного магнитного диполя с поправкой на ее линейный характер убывания при увеличении глубины, т. к. при этом изменяется также ордината точек наблюдения. Поэтому не удается свести расчет к решению интегральных выражений.

Разработана методика приближенного расчета, получены математические выражения и выполнен расчет напряженности поля протяженного дефекта, эквивалентного ленточному магнитному диполю, плотность «магнитных зарядов» σ_n на гранях которого уменьшается по линейному закону от максимального значения в верхней его части до нуля на глубине 3 мм. Сравнение кривых $\frac{H_x}{\sigma}(x)$ для случаев

уменьшения плотности «магнитных зарядов» на гранях диполя с увеличением его глубины по линейному закону и равномерного их распределения при одинаковой высоте ленточного диполя показало, что максимальные значения $\frac{H_x}{\sigma_n}$ в первом случае всегда меньше при одинаковых значениях ширины и высоты диполя. То есть если внешнее магнитное поле убывает от поверхности вглубь ферромагнитного объекта, то поверхностные дефекты в объектах при магнитных методах контроля будут обнаруживаться хуже, чем при однородном намагничивании контролируемых сечений объекта, что и подтверждается экспериментально.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. Зацепин, Н. Н. К расчету магнитостатического поля поверхностных дефектов. І. Топография полей моделей дефектов / Н. Н. Зацепин, В. Е. Щербинин // Дефектоскопия. – 1966. – № 5. – С. 51–59.

2. **Фалькевич, А. С.** Магнитографический контроль сварных соединений / А. С. Фалькевич, М. Х. Хусанов. – Москва: Машиностроение, 1966. – 176 с.

3. Козлов, В. С. Техника магнитографической дефектоскопии / В. С. Козлов. – Минск: Вышэйшая школа, 1976. – 256 с.: ил.

4. Способ магнитографического контроля ферромагнитных изделий: пат. RU 2154818 / В. А. Новиков. – Опубл. 20.08.2000.

5. **Новиков, В. А.** Экспериментальное исследование магнитографического контроля объектов при их намагничивании перемещаемым постоянным магнитом через магнитоноситель, II / В. А. Новиков, А. В. Кушнер, А. В. Шилов // Дефектоскопия. – 2010. – № 7. – С. 51–58.

Статья сдана в редакцию 29 июня 2022 года

Иван Викторович Трепачкин, магистр, Белорусско-Российский университет. E-mail: roqueii@mail.ru. **Виктория Алексеевна Третьякова**, магистр, Белорусско-Российский университет. E-mail: viktoryia05@mail.ru. **Владимир Алексеевич Новиков**, д-р техн. наук, проф., Белорусско-Российский университет. E-mail: novikovva@tut.by.

Ivan Viktorovich Trepachkin, MSc (Engineering), Belarusian-Russian University. E-mail: roqueii@mail.ru.VictoriaAlekseyevnaTretyakova,MSc (Engineering),Belarusian-RussianUniversity.E-mail: viktoryia05@mail.ru.

Vladimir Alexeyevich Novikov, DSc (Engineering), Prof. Belarusian-Russian University. E-mail: novikovva@tut.by.