УДК 534.16 ОБ ИСПОЛЬЗОВАНИИ КРАЕВЫХ ВОЛН ДЛЯ КОНТРОЛЯ ОБЪЕКТОВ С ТЕХНОЛОГИЧЕСКИМ ВЫСТУПОМ ИЛИ ПАЗОМ

А. Р. БАЕВ¹, М. В. АСАДЧАЯ¹, О. С. СЕРГЕЕВА², В. В. ПАРАДИНЕЦ¹

¹Институт прикладной физики НАН Беларуси Минск, Беларусь ²Белорусско-Российский университет Могилев, Беларусь

UDC 534.16 ON THE USE OF EDGE WAVES TO TEST OBJECTS WITH A TECHNOLOGICAL LEDGE OR GROOVE

A. R. BAEV, M. V. ASADCHAYA, O. S. SERGEEVA, V. V. PARADINETS

Аннотация. На основе анализа известных исследований по возбуждению краевых поперечных и продольных волн в объектах со сложным рельефом поверхности изучаются возможности применения полученных результатов для решения ряда прикладных задач. В частности, это касается дистанционного контроля дефектов или диагностики физикомеханических свойств материала в труднодоступных местах с использованием в качестве первичной моды волны Рэлея, преобразующейся в краевую моду на технологическом выступе или основании паза изделия. Используя этот принцип, предложена конструктивная схема ультразвукового устройства для передачи (приема) поперечных волн разной частоты в исследуемые объекты.

Ключевые слова: ультразвуковой контроль, трансформация и рассеяние волн, поле рассеяния, краевые волны.

Abstract. On the basis of analysis of the known studies of excitation of the edge transverse and longitudinal waves in objects with a complex surface relief, the possibilities of using the obtained results for solving a number of applied problems are studied. In particular, it deals with of defect detection or diagnostics of physical and mechanical properties of material in hard-to-reach places with use as a primary mode of Rayleigh waves, transformed into an edge mode on a technological ledge or the base of a product groove. Using this principle, a design scheme of the ultrasonic device for transmitting (receiving) transverse waves of different frequencies into the studied objects is proposed.

Keywords: ultrasonic inspection, wave transformation and scattering, scattering field, edge waves.

Расширение спектра объектов, имеющих сложный рельеф и места, труднодоступные для надежной диагностики физико-механических свойств материалов, обнаружение в них трудно выявляемых дефектов требует использования более совершенных методик и средств измерений [1]. В частности, это касается дистанционного контроля материала объектов, имеющих технологический выступ или паз, когда применение традиционных методик неэффективно. Из проведенных ранее исследований [2] следует вывод о возможности использования для решения указанных задач именно возбуждаемых волной Рэлея или поверхностной волной (ПАВ) краевых волн – поперечных и

продольных [1, 3, 4]. При этом было изучено влияние радиусного перехода выступа, частоты волны f на коэффициент трансформации волны Рэлея Rв краевые поперечную T и продольную L моды и обратно, а также построены поля рассеяния краевых волн $\Phi_{T,L}$ ($\dot{\alpha}$, ψ) в объеме выступа, где $\dot{\alpha}$ и ψ – углы, отсчитываемые в плоскости падения преобразователя ПАВ и перпендикулярно ей. Вместе с тем угол наклона поверхности передней кромки выступа по отношению к основанию образца варьировался в диапазоне $3\pi/4 \ge \phi \ge \pi/4$. Исходя из результатов проведенных исследований и потребностей промышленного производства, сделан вывод о возможности их использования как для разработки источников (приемников) УЗК, так и схем контроля объектов с выступами, технологическими пазами, что представляет интерес для повышения эффективности традиционной дефектоскопии, структуроскопии и научных исследований.

В первой части работы рассмотрена предложенная схема ультразвукового преобразователя (приемника), в основу работы которой положен принцип трансформации поверхностной моды в краевую и обратно. Предлагается и анализируется схема зондирования объектов с выступом краевыми модами не только для выявления дефектов, но и для дистанционного определения свойств материала как на производстве, так и при проведении научных исследований. Во второй части работы осуществлена экспериментальная проверка возможности использования технологического паза или трещины в качестве своеобразного преобразователя волны Рэлея в краевую поперечную моду, используемую, например, для выявления дефектов под пазом, дистанционного мониторинга состояния металла и толщину его стенок и др.

Комбинированная схема ультразвукового устройства и некоторые способы контроля объектов с использованием эффекта трансформации волны Рэлея в краевые моды. Схемы использования эффекта трансформации упругих мод $R \to T$ на выступе поясняются на рис. 1. В первом случае (см. рис. 1, a, δ) это касается разработки и использования комбинированных преобразователей для излучения (приема) поперечных волн в объем «традиционного» объекта, имеющего скорость $c_{T,O}$, под углом $\alpha_T \ge 0$. При этом контакная поверхность акустически согласующей призмы (АСП) служит для направления возбуждаемых первичным ПЭП волн Рэлея на внутреннюю поверхность выступа, где в результате трансформации волн генерируется T мода, проходящая в исследуемый объект. То есть для реализации такой схемы прозвучивания необходим подбор материалов с соответствующими акустическими свойствами, обеспечивающими минимальный шумовой фон, создаваемый при прохождении границы сред упругими модами.

Важно отметить, что в данном случае представляется возможным зондировать объект на разных частотах путем использования одного многочастотного ПЭП или размещая на поверхности согласующей призмы (1, 1') как один, так и несколько источников ПАВ (см. рис. 1).

Представленные на рис. 1, *в*, *г* схемы предназначены именно для непосредственного ввода (приема) в исследуемый объект ПАВ с целью:

а) непосредственного выявления дефектов, лежащих как в объеме выступа, так и за ним, используя эффекты преобразования на выступе $R \to T$ и обратно;

б) измерения физико-механических свойств материалов, включая механические напряжения, по данным скорости распространения краевых поперечных *с*_{*T*} и продольных *с*_{*L*} волн.

Рис. 1. Схемы устройств для излучения-приема краевых волн при $R \to T$ и $T \to R$ преобразовании на выступе (a, δ) и схемы прозвучивания объектов с выступом краевой поперечной модой (e, z): 1, 1'– преобразователи ПАВ; 2 – акустически согласующая призма (АСП) для преобразования ПАВ в поперечную моду и обратно; 3 – поверхность объекта с выступом (e, z); 4 – рабочая поверхность АСП; 5 – объект контроля

Преимущество предложенного подхода по сравнению с традиционным, использующим в качестве зондирующих волн объемные моды, заключается, прежде всего, в реализации дистанционного зондирования. При этом существенно снижается ослабление акустического сигнала, а структура поля краевых волн $\Phi(\dot{\alpha}, \psi)$ в объеме выступа не претерпевает значимого изменения, где $\dot{\alpha}$ и ψ – углы, отсчитываемые в плоскости падения преобразователя ПАВ и перпендикулярно ей. Важно отметить, что путём выбора правильного положения ПЭП представляется возможным практически исключить шумовой фон, вызванный отражением акустического сигнала от радиусного (галтельного) перехода выступа, и даже с достаточно малым радиусом кривизны $r_{\lambda} = r/ << 1$, где λ – длина волны ПАВ.

Отметим, что при проведении измерения скорости продольной и (или) поперечной волн применительно к оценке коррелирующих с ними физикомеханических свойств материала в выступе при наличии воздействия внешних полей, температуры и др. используются данные о времени прохождения краевых переотраженных от боковых стенок выступа мод, расположенных на расстоянии b друг от друга:

$$c_L = bn / \Delta t_L; \quad c_T = bm / \Delta t_T,$$

где n, m — количество прохождений сигнала между стенками выступа в прямом и обратном направлении. Величины Δt_L и Δt_T легко измеряются с использованием стандартного оборудования.

О возможности контроля объектов с технологическим пазом или модельной трещиной. Прохождение по поверхности технологического паза или трещины ПАВ [3, 4] и их трансформацию на вершине в T моду и обратно можно использовать в ряде случаев для моделирования процессов формирования упругих мод в объекте с нулевым углом выступа ($\gamma \sim 0^\circ$), что ранее не изучалось в плане особенностей проявления механизма трансформации волн. В то же время раскрытие новых возможностей использования изучаемого явления для повышения эффективности акустического контроля и диагностики твердых тел на наличие потенциально опасных дефектов представляет значительный интерес.

Методические особенности измерений. Принципиальные схемы исследований особенностей трансформации мод на трещине ($R \rightarrow T$ и $T \rightarrow R$), а также изучение возможностей использования технологического пропила в качестве трансформатора мод для выявления объемных дефектов приведены на рис. 2 и 3. В качестве объекта исследования использованы образцы из дюраля. Один из них, прошедший метрологическую поверку, выполнен с реальной усталостной трещиной (см. рис. 2) глубиной h = 400...500 мкм с раскрытием, равным 8 мкм. В этом случае для излучения и приема зондирующего импульса использованы преобразователи волн Рэлея, а также, что важно, преобразователь сдвиговых волн, расположенный непосредственно под трещиной для определения амплитуды краевой Т моды. Последний также используется для исследования обратного преобразования мод. При проведении исследований излучается волна Рэлея, часть энергии которой отражается от устья трещины, а другая распространяется по стенке трещины и трансформируется в Т моду, которая переотражается между стенками пластины и, в результате обратного преобразования, в качестве волны Рэлея поступает на приемные ПЭП. В другом образце (см. рис. 3), предназначенном для изучения возможностей выявления расположенных под технологическим пазом объемных дефектов с помощью краевой Т волны, трансформированной на вершине паза из поверхностной моды, глубина паза 3 мм и ширина 300 мкм. В качестве отражателей (модельных дефектов) использованы цилиндрические отверстия диаметром 2 мм. Рабочая частота преобразователей волн Рэлея f = 5 МГц. В качестве источника электрических импульсов, их приемника и синхронизирующего устройства применена стандартная аппаратура, используемая в [2].

Результаты исследований. Данные прозвучивания образца с естественной усталостной трещиной согласно представленной на рис. 2 схеме позволили выявить следующее. Во-первых, как показывает характерная осциллограмма прозвучивания трещины поверхностной волной в режиме эхо и теневом режиме, сигнал-отклик представляет собой серию импульсов, приходящих в виде ПАВ на приемный ПЭП.

При этом в режиме эхо наблюдаемый на осциллограмме первый импульс является отражением ПАВ от устья трещины, второй формируется в результате прохождения ПАВ по поверхности трещины и трансформации ее в окрестности

вершины в поперечную моду с последующим рассеянием, а затем, после отражения от противолежащей поверхности образца, возвращается на ПЭП в обратном порядке. Таким образом, ПАВ дважды проходит вдоль стенок трещины и дважды трансформируется на ее вершине в другую моду и обратно. Последующие же импульсы, принимаемые ПЭП, генерируются в результате периодической трансформации на трещине переотражаемых в плоском слое импульсов Т моды. То есть в этом случае основная энергия импульса сконцентрирована в поперечной моде, и при очередном переотражении от донной поверхности образца она трансформируется в ПАВ именно в окрестности вершины трещины и возвращается к приемному ПЭП. Исходя из полученных данных, временной интервал между первым и вторым импульсами t_{21} , а также между вторым и третьим импульсами t_{32} , наблюдаемыми на осциллограмме, будет равен: $t_{21} = 2 (h/c_R + (d - h)/c_T) + \Delta t$; $t_{32} = h/c_R + 2d/c_T$, где d – толщина образца; h – глубина трещины; Δt – временной сдвиг, обусловленный отражением ПАВ от стенки трещины. Отсюда следует заключить, что в некоторых случаях возможно судить не только о наличии, но и глубине трещины по величине временных интервалов между переотраженными сигналами как в теневом, так и в эхо режимах. Необходимо учесть, что в зависимости от степени контакта стенок трещины (граничных условий) величина с_R может уменьшаться на 1 %...2 %.

Рис. 2. Схема экспериментального исследования акустического тракта применительно к трансформации $R \to T$ и $T \to R$ мод на усталостной трещине и характерная осциллограмма сигнала отклика: 1 – излучающий ПЭП; 2 – принимающий ПЭП волн Рэлея; 3 – имитатор технологического паза или трещины; 4 – ПЭП нормальных сдвиговых волн на поверхности образца

В случае, когда источником является ПЭП сдвиговых волн, количество регистрируемых ПЭП волны Рэлея импульсов существенно возрастает, что

обусловлено слабой расходимостью T волны. Установлено, что варьирование угла между плоскостью поляризации преобразователя сдвиговых волн и плоскостью трещины до $\varphi = 45^{\circ}...50^{\circ}$ не оказывает существенного влияния на амплитуду волны в пределах ~ 2...3 дБ. В отсутствие же трещины уровень сигнала на приемном ПЭП сравним с измерительным шумом.

Рис. 3. Схема экспериментального моделирования отраженного от модельного дефекта импульса T волны, трансформированного в ПАВ на вершине паза (δ): 1 – ПЭП поверхностной волны; 2 – паз глубиной 3 мм и шириной 0,3 мм в образце из дюралюминия; 3 – образец; 4 – один из цилиндрических отражателей диаметром 2 мм; f = 5 МГц

Таким образом, трещину можно рассматривать как своеобразную «акустическую антенну», весьма чувствительную к горизонтально поляризованным сдвиговым волнам, регистрация которых равноценна с обеих сторон трещины. Рис. 3 иллюстрирует принципиальную возможность использования технологических выемок, пропилов, а также трещин для обнаружения дефектов, расположенных под ними, с помощью трансформированной из ПАВ и рассеянной на вершине пропила поперечной моды. Чувствительность такого способа выявления дефектов, расположенных на расстоянии до 10...15 мм от вершины пропила, может достигать нескольких миллиметров квадратных.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. Неразрушающий контроль: справочник: в 7 т. / Под общ. ред. В. В. Клюева. – Москва: Машиностроение, 2003. – Т. 3. – 864 с.

2. Formation of of Acoustical Field of a Rayleigh-Wave Transducer in an Object with Protrusion / A. R. Baev [et al.] // With a Right Angle Russian Nondestructive Testing Journal. – 2014. – Vol. 50, N_{0} 6. – P. 25–36.

3. Аббакумов, К. Е. Распространение волны Рэлея вдоль границы твердого тела с трещиной / К. Е. Аббакумов, В. А. Бритвин, Р. С. Коновалов // Изв. ЛЭТИ. – 2009. – № 2. – С. 57–64.

4. Поверхностные акустические волны в неоднородных средах / Ю. В. Гуляев [и др.]. – Москва: Наука, 1991. – 263 с.

E-mail: baev@iaph.bas-net.by, o.s.serg@mail.ru, asadchaya@iaph.bas-net.by.