УДК 620.179.147 ПРИМЕНЕНИЕ РАЗЛИЧНЫХ МАТЕРИАЛОВ В КАЧЕСТВЕ ПРОТЕКТОРА ДЛЯ ВИХРЕТОКОВЫХ ПРЕОБРАЗОВАТЕЛЕЙ

А. Г. ОТОКА¹, О. В. ХОЛОДИЛОВ²

¹РУП «Гомельское отделение Белорусской железной дороги» ²Белорусский государственный университет транспорта Гомель, Беларусь

UDC 620.179.147 USE OF VARIOUS MATERIALS AS A PROTECTOR FOR EDGE-CURRENT TRANSDUCERS

A. G. OTOKA, O. V. KHOLODILOV

Аннотация. Рассмотрены проблемы, связанные с частым разрушением защитных протекторов вихретокового преобразователя типа МДФ. Предложено решение проблемы путем изготовления протекторов из различных материалов собственными силами предприятий, выполняющих неразрушающий контроль деталей вихретоковым методом с применением аналогичных преобразователей в защитном корпусе. Проведен сравнительный анализ различных легкодоступных материалов, которые можно использовать в качестве протектора вихретоковых преобразователей на примере преобразователя ПН-12-МДФ01.

Ключевые слова: вихретоковый контроль, преобразователь вихретоковый, протектор, стандартный образец, керамика, капролон, фторопласт, древесина, текстолит, коэффициент усиления, чувствительность.

Abstract. The problems associated with the frequent destruction of protective protectors of an eddy current converter of the MDF type are considered. A solution to the problem is proposed by manufacturing protectors from various materials by own efforts of enterprises performing non-destructive testing of parts by the eddy current method using similar converters in a protective housing. A comparative analysis of various readily available materials that can be used as a protector of eddy current converters is carried out on the example of the PN-12-MDF01 converter.

Keywords: eddy current testing, eddy current transducer, standard sample, protector, ceramics, caprolon, fluoroplast, wood, textolite, amplification factor, sensitivity.

Введение. Вихретоковый метод (далее – ВТ) начал применяться на железнодорожном транспорте относительно недавно. По сравнению с ультразвуковым и магнитопорошковым методами контроля, для которых давно и четко отработаны требования к методикам и дефектоскопам в отраслевых, государственных и межгосударственных стандартах, к ВТ-дефектоскопам таких требований нет [1].

Технические характеристики вихретоковых дефектоскопов в значительной мере определяются конструкцией вихретоковых преобразователей [2].

Преобразователи вихретоковые (далее – ВТП) типа МДФ (ПН-12-МДФ01, ПН-09-МДФ-У-01) предназначены для работы с дефектоскопами вихретоковыми ВД3-71 (рис. 1), ВД-132-ОКО-01 и аналогичными, а также в составе установок и систем неразрушающего контроля (далее – НК) при проведении вихретокового контроля (далее – ВТК) и выявления дефектов типа несплошностей, выходящих на поверхность или залегающих на небольшой глубине, разнообразных трещин, расслоений и других дефектов в электропроводящих металлах и сплавах.

Рис. 1. Внешний вид дефектоскопа вихретокового ВДЗ-71 в комплекте с ВТП и стандартным образцом предприятия СОП 2353.08: 1 – преобразователь типа МДФ в защитном корпусе; 2 – стандартный образец предприятия СОП 2353.08 с искусственными дефектами; 3 – блок электронный дефектоскопа; 4 – кабель соединительный для подключения ВТП к электронному блоку

ВТП относится к неремонтируемым изделиям. При эксплуатации ВТП следует предохранять от ударов и механических повреждений [3]. В целях исключения износа ВТП типа МДФ последний устанавливают в защитный корпус со сменным протектором (рис. 2).

При установке ВТП типа МДФ в защитный корпус метка на корпусе преобразователя должна совпадать с линией на торце защитного корпуса.

При проведении контроля ВТП типа МДФ метка на корпусе ВТП должна обязательно совпадать с направлением траектории сканирования (рис. 3).

В основе ВТК лежит закон электромагнитной индукции Фарадея и анализ взаимодействия внешнего электромагнитного поля с электромагнитным полем вихревых токов, наводимых в объекте контроля этим полем. Плотность вихревых токов уменьшается по глубине в материале [4].

Распределение плотности вихревого тока можно представить на примере дюралевой пластины с удельной электрической проводимостью материала 30 МСм/м, толщиной 4 мм и площадью 20 × 40 мм² с поперечным поверхностным дефектом по центру в виде прорези глубиной 3 мм и шириной 0,4 мм.

На рис. 4, *а* цветовым градиентом показано распределение плотности вихревого тока, полученное в среде ComsolMultiphysics, индуцированного обмоткой возбуждения для случая расположения ВТП над бездефектным участком.

На рис. 4, *б* цветовым градиентом показано распределение плотности вихревого тока, индуцированного обмоткой возбуждения для случая расположения ВТП симметрично относительно прорези.

Рис. 2. Размещение ВТП типа МДФ в защитном корпусе: 1 – ВТП ПН-12-МДФ01; 2 – основание корпуса; 3 – крышка корпуса; 4 – протектор

Рис. 3. Расположение ВТП ПН-12-МДФ01 в защитном корпусе

Рис. 4. Распределение плотности вихревого тока на бездефектном участке (*a*) и на участке с дефектом (б) [2]

Чувствительность ВТК, как и любого другого вида НК, характеризуется минимальным размером выявляемого дефекта. Выходящая на поверхность трещина может быть охарактеризована глубиной, протяженностью, шириной раскрытия, углом направления распространения трещины от поверхности и т. п. [7].

Однако заводские керамические протекторы часто разрушаются в результате соударения с какой-либо поверхностью. Вследствие этого возникает необходимость приобретения новых, стоимость которых в настоящее время составляет $\approx 40...80$ у. е. Приходится обращаться к изготовителю ВТП, что приводит к большим временным потерям на получение положительного результата.

Результаты эксперимента и их обсуждение. ПН-12-МДФ01 представляет собой трансформаторный, дифференциальный ВТП накладного типа с размером рабочей поверхности Ø12 мм. Схема подключения ВТП представлена на рис. 5. Габаритные размеры – Ø13 × 38 мм. Диапазон рабочих частот ВТП составляет 100...250 кГц.

Рис. 5. Схема подключения ВТП ПН-12-МДФ01

171

Проведенные нами исследования показали, что в качестве протектора можно использовать некоторые материалы, отвечающие ряду требований.

В соответствии с размерами заводского керамического протектора ВТП ПН-12-МДФ01 нами были изготовлены протекторы из фторопласта, текстолита, капролона и древесины. Выбор таких материалов связан с широким применением их в различных сферах на производстве. Основным критерием выбора материала является износостойкость и ударопрочность. Также следует отметить, что материал должен быть немагнитным и обладать низким коэффициентом трения.

Основным параметром с точки зрения безопасности является глубина трещины, а затем её длина. Ширина раскрытия трещины влияет на возможность её выявления. Наиболее опасными являются трещины большой глубины при малом раскрытии [1].

Для сравнительного анализа всех материалов по выявлению дефектов за основу использовалась амплитуда сигнала от искусственных дефектов (ИД) типа «пропил» глубиной 0,2; 0,5; 1,0; 2,0 мм на поверхности стандартного образца СОП 2353.08. Измерения проводились по рабочей поверхности Б СОП 2353.08 с шероховатостью Ra = 1,25 мкм.

Протекторы из различных материалов изготавливались толщиной 1,0 мм по аналогии с заводским керамическим. Толщина протектора контролировалась с использованием микрометра типа МК с ценой деления 0,01 мм (рис. 6).

Рис. 6. Измерение толщины керамического протектора микрометром типа МК

Стандартный образец предприятия СОП 2353.08 (рис. 7) относится к средствам проверки общей работоспособности вихретоковых дефектоскопов и рассчитан на применение совместно с вихретоковыми дефектоскопами ВД3-71, ВД-132 и др. [5].

Основные параметры настройки дефектоскопа ВД3-71 при использовании ВТП ПН-12-МДФ01 приведены в табл. 1.

Рис. 7. Стандартный образец СОП 2353.08 (сталь 45)

Табл.1. Параметры настройки дефектоскопа ВД3-71

Рабочая частота ВТП <i>F</i> , кГц	Коэффициент усиления К _{у1} , дБ	Напряжение возбуждения ВТП Uг, В	Изменение фазы сигнала ф, град	Тип рамки АСД	Количество рамок	Радиус рамки (круга), % экрана	Масштаб (X, Y)				
200	040	2,0	138	Круг	1	100	x0,7				
Примечание – В окне пункта меню «Вид» задаётся тип отображения «ХҮ» – комплексная плоскость											

Сравнительный анализ материалов, используемых в качестве протектора ВТП, заключался в следующем.

1. ВТП в защитном корпусе с протектором из определенного материала (перечень возможных материалов протектора приведен выше) устанавливался на образец СОП 2353.08 в бездефектном месте.

2. ВТП перемещался через искусственные дефекты ИД5...ИД8 последовательно, начиная с наименьшего по глубине залегания. При перемещении ВТП через искусственный дефект со скоростью в интервале 10...100 мм/с [6] убеждались, что происходит чёткое отклонение сигнала от центра экрана. С помощью регулировки усиления K_{y1} добивались, чтобы индикация от искусственного дефекта глубиной 0,2; 0,5; 1,0 и 2,0 мм была равна или незначительно превышала пороговый уровень. При этом должна была срабатывать автоматическая сигнализация дефектов (АСД).

3. Фиксировались значения коэффициента усиления K_{y1} дефектоскопа каждого материала протектора по отдельности по ИД5...ИД8 по стандартному образцу СОП 2353.08.

Значение коэффициента усиления дефектоскопа ВД3-71 с использованием в качестве протектора ВТП ПН-12МДФ-01 различных немагнитных материалов приведены в табл. 2.

Диаграмма зависимости коэффициента усиления дефектоскопа ВД3-71 с использованием ВТП ПН-12-МДФ01 с протекторами, изготовленными из материалов различной природы от глубины искусственного дефекта стандартного образца СОП 2353.08, приведена на рис. 8.

Табл. 2. Порог чувствительности дефектоскопа с использованием различных материалов протектора

Материал протектора ВТП			Коэффициент усиления дефектоскопа <i>К</i> _{у1} , дБ				
			ИД6	ИД7	ИД8		
	Фторопласт (диэлектрик, низкая износо- стойкость, высокая теплостойкость, мень- шая прочность по сравнению с термоплас- тичными полимерами)	24	17	12	10		
	Текстолит (диэлектрик, высокая прочность при сжатии, высокая ударопрочность)	25	18	14	12		
	Древесина (диэлектрик, низкая теплопро- водность, износостойкость зависит от усло- вий эксплуатации)	26	20	16	13		
	Капролон (диэлектрик, высокая прочность)	23	16	12	10		
	Керамика (диэлектрик, высокая хрупкость, теплопроводность, твердость)	24	18	13	11		

Рис. 8. Зависимость коэффициента усиления дефектоскопа от материала протектора ВТП

Установлено, что порог чувствительности дефектоскопа с использованием протектора из капролона и фторопласта незначительно ниже (т. е. выявляются дефекты при меньшем значении коэффициента усиления K_{y1}), чем у керамического (рис. 9).

Рис. 9. Установление порога чувствительности дефектоскопа с использованием ВТП с протектором из капролона (усиление дефектоскопа 23 дБ): 1 – усиление дефектоскопа; 2 – ВТП в защитном корпусе с протектором из капролона; 3 – сигнал от ИД5 (глубина 0,2 мм); 4 – пороговый уровень; 5 – индикация автоматической сигнализации дефектов (АСД)

Порог чувствительности дефектоскопа с использованием протектора из текстолита незначительно выше (т. е. выявляются дефекты при большем значении коэффициента усиления K_{y1}), чем при использовании керамического.

При этом использование протектора из древесины показало, что выявляемость дефектов типа «пропил» ИД5...ИД8 по СОП 2353.08 наименее уверенная (т. е. коэффициент усиления K_{y1} имеет однозначно выше значения) в сравнении с заводским керамическим и другими протекторами, которые изготовлены из капролона, фторопласта, текстолита (рис. 10).

Заключение. Из проведенных исследований следует, что в качестве протектора ВТП типа МДФ с точки зрения чувствительности можно использовать все рассмотренные материалы. Лучшей износостойкостью обладают текстолит и капролон. Фторопласт обладает низкой износостойкостью, и при использовании его в качестве материала протектора это приведет к необходимости частой замены протектора. Применение протектора из древесины нецелесообразно в связи с более низкой чувствительностью контроля и высокой зависимостью износостойкости материала от условий эксплуатации.

Применение протекторов из текстолита и капролона позволяет отказаться от приобретения дорогостоящих и хрупких фирменных керамических протекторов и в то же время сохранить требуемую чувствительность контроля, что является основным фактором при замене.

Изготовление протекторов силами самих предприятий позволит сократить затраты на приобретение протекторов в $\approx 50{-}100$ раз.

175

Рис. 10. Установление порога чувствительности дефектоскопа с использованием ВТП с протектором из древесины (усиление дефектоскопа 26 дБ): 1 – усиление дефектоскопа; 2 – ВТП в защитном корпусе с протектором из древесины; 3 – сигнал от ИД5 (глубина 0,2 мм); 4 – пороговый уровень; 5 – индикация автоматической сигнализации дефектов (АСД)

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. Вихретоковый контроль в системе неразрушающего контроля деталей подвижного состава ОАО «РЖД» / А. В. Чуприн [и др.] // В мире НК. – 2019. – № 2. – С. 66–72.

2. Белянков, В. Ю. Анализ различных конструктивных вариантов накладного вихретокового преобразователя дефектоскопа / В. Ю. Белянков // Вестн. науки Сибири. – 2014. – № 3 (13). – С. 27–40.

3. Этикетка ПН-12-МДФ01-33.2-23535778–2007Э. Преобразователь вихретоковый ПН-12-МДФ01. – Москва: Промприлад, 2007. – 3 с.

4. ГОСТ Р ИСО 15549–2009. Контроль неразрушающий. Контроль вихретоковый. Основные положения. – Москва: Стандартинформ, 2011. – 8 с.

5. Паспорт СОП 2353.08–09 ПС. Стандартные образцы СОП 2353.08 и СОП 2353.09. – Москва: Промприлад, 2006. – 5 с.

6. ВД 3-71.23535778.005.00.00-01 РЭ. Руководство по эксплуатации. Дефектоскоп вихретоковый портативный ВДЗ-71 НКІVУ. – Москва: Промприлад, 2009. – 54 с.

7. О чувствительности вихретокового контроля деталей железнодорожного подвижного состава / Г. Я. Дымкин [и др.] // Дефектоскопия. – 2019. – № 8. – С. 47–53.