УДК 621.793.3

ВЛИЯНИЕ ПРОЦЕНТНОГО СОДЕРЖАНИЯ АКТИВАТОРА NH₄Cl НА ШЕРОХОВАТОСТЬ ПОВЕРХНОСТИ ДИФФУЗИОННЫХ ХРОМИРОВАННЫХ СЛОЕВ

В. С. АНИСИМОВ, А. П. АНДРУКОВИЧ

Научный руководитель А. М. ДОЛГИХ, канд. техн. наук, доц. Полоцкий государственный университет имени Евфросинии Полоцкой Новополоцк, Беларусь

Одним из признанных методов повышения эксплуатационных характеристик деталей машин и инструмента является химико-термическая обработка (ХТО), которая радикальным образом изменяет состав и физико-химические свойства поверхностных слоев деталей машин. Это позволяет значительно повысить их износостойкость, жаростойкость, коррозионную стойкость, а также увеличивает надежность и долговечность машин.

Шероховатость поверхности (ГОСТ 2789–73) в значительной степени определяет основные эксплуатационные свойства деталей и узлов машин: износостойкость, сопротивление усталости, надежность, контактную жесткость и теплопроводность стыков сопряженных деталей, коррозионную стойкость, герметичность соединений и др. Шероховатость поверхности, получаемая при насыщении поверхности деталей машин, зависит от многих технологических факторов: материала и качества поверхности исходного вида; механических свойств, химического состава и структуры материала заготовки; состава насыщающей смеси, активатора и т. д.

Исследование диффузионных защитных покрытий, полученных методом химико-термической обработки, проводили на образцах, изготовленных из стали марки У10 ГОСТ 1435.

Процесс диффузионного хромирования проводят в исходной смеси, состоящей из следующих компонентов:

$$98 \% [40 \% Al_2O_3 + 60 \% (25 \% CK25 + 75 \% Cr_2O_3)] + 2 \% NH_4C1.$$

Результаты исследований представлены в табл. 1.

Табл. 1. Влияние процентного содержания активатора на шероховатость поверхности после нанесения карбидных хромированных покрытий (состав смеси для хромирования: $[30 \% \ Al_2O_3 + 70 \% \ (23 \% \ Si + 77 \% \ C_2O_3)] + 2 \% \ A)$

Номер	n %	(100-п) смеси		Активатор	Процентное содержание	Толщина	Шероховатость
образца	Al ₂ O ₃	Si	Cr_2O_3	A	активатора	слоя, мкм	Ra, мкм
1	30	23	77	NH4Cl	0,5	34	1,030
2	30	23	77		1	37	1,374
3	30	23	77		2	41	1,271
4	30	23	77		3	59	1,020

Проведенные исследования убедительно показывают, что на параметры шероховатости поверхности, полученные после нанесения покрытий диффузионного типа, существенное влияние оказывают вид применяемого активатора и его процентное содержание в насыщающей смеси.