УДК 621.791.927.5 ИССЛЕДОВАНИЕ ВЛИЯНИЯ ЛЕГИРУЮЩИХ КОМПОНЕНТОВ НА ЖАРОСТОЙКОСТЬ НАПЛАВЛЕННЫХ СПЛАВОВ СИСТЕМЫ ТИТАН–АЛЮМИНИЙ

А. И. КОВТУНОВ, В. В. ЕЛЬЦОВ, А. Г. БОЧКАРЕВ, Ю. Ю. ХОХЛОВ

Тольяттинский государственный университет Тольятти, Россия

UDC 621.791.927.5 INVESTIGATION OF THE INFLUENCE OF ALLOYING COMPONENTS ON THE HEAT RESISTANCE OF WELDED ALLOYS OF THE TITANIUM–ALUMINUM SYSTEM

A. I. KOVTUNOV, V. V. ELTSOV, A. G. BOCHKAREV, YU. YU. KHOKHLOV

Аннотация. Представлены результаты исследований влияния легирующих компонентов на химический состав наплавленных на титан сплавов системы титан–алюминий с применением алюминиевой и алюминиево-кремниевых присадочных материалов. Установлено влияние кремния, циркония и ниобия на жаростойкость сплавов системы титан–алюминий, наплавленных с применением алюминиевых и алюминиевокремниевых присадочных проволок.

Ключевые слова: наплавка, сплавы титан–алюминий, легирующие компоненты, присадочная проволока, жаростойкость, химический состав.

Abstract. The results of studies of the effect of alloying components on the chemical composition of alloys of the titanium–aluminum system deposited on titanium with the use of aluminum and aluminum-silicon filler materials are presented. The influence of silicon, zirconium and niobium on the heat resistance of alloys of the titanium–aluminum system deposited with the use of aluminum and aluminum-silicon filler wires has been established.

Keywords: hardfacing, titanium-aluminum alloys, alloying components, filler wire, heat resistance, chemical composition.

Введение. Интерметаллидные сплавы титан–алюминий находят все более широкое применение в промышленности, что связано с их уникальным комплексом физико-механических и эксплуатационных свойств.

Алюминиды титана имеют более высокую жаростойкость и жаропрочность, чем промышленные титановые сплавы, их плотность в 2,5 раза ниже плотности жаропрочных никелевых сплавов. Наибольший практический интерес представляют алюминиды Ti₃Al и TiAl [1]. Сплавы титана с алюминием могут успешно применяться в качестве жаростойких наплавленных слоев на изделиях из титана [2]. Жаростойкость наплавленных слоев определяется прежде всего содержанием алюминия и может быть повышена легированием. В качестве легирующих компонентов, повышающих жаростойкость алюминидов титана, рекомендуют применять кремний, цирконий, ниобий и их комбинации [1, 3–5].

Цель работы – определить влияние легирующих компонентов на жаростойкость наплавленных сплавов системы титан–алюминий.

Методика проведения исследований. Аргоно-дуговую наплавку неплавящимся электродом сплавов системы титан–алюминий проводили на специальной автоматической двухкоординатной установке с использованием сварочной горелки AUT-TIG 400W фирмы Abicor-Bensel и универсального сварочного источника Migatronic BDH 550 [6].

Для наплавки использовали образцы из титана марки BT1-0 размером $150 \times 120 \times 10$ мм и присадочную алюминиевую проволоку CвA5 диаметром 1,2 мм. Присадочную проволоку вводили в хвостовую часть жидкометаллической ванны, что обеспечивало стабильное формирование наплавленного валика и уменьшало потери алюминия на угар и разбрызгивание [2, 6]. Скорость подачи присадочной проволоки изменялась в пределах $V_{n/n} = 1...5$ м/мин при скорости наплавки $V_H = 0,15$ м/мин и силе тока $I_H = 270$ А. Варьирование скоростью подачи присадочной проволоки позволяло получать наплавленный металл с различным содержанием алюминия.

Для легирования наплавленного металла кремнием применяли присадочные проволоки CBAK5, CBAK12. Для легирования цирконием и ниобием применяли циркониевую (диаметр 1,2 мм) и ниобиевую проволоку (диаметр 1,5 мм), которые укладывали на титановые образцы в специальные пазы, изготовленные перед наплавкой. Проволока укладывалась в один, два и три ряда, что позволяло изменять степень легирования цирконием и ниобием наплавленных сплавов.

Жаростойкость покрытия определялась по относительному изменению массы образцов с одинаковой площадью поверхности, выдерживаемых в печи сопротивления при 800 °С. Температуру испытаний выбрали исходя из максимальной температуры эксплуатации алюминидов титана [1]. Массу образцов измеряли через каждые 100 ч выдержки после предварительного удаления продуктов высокотемпературной коррозии с поверхности образцов.

Исследования химического состава наплавленного металла проводились методами растровой электронной микроскопии на комплексе сканирующего электронного микроскопа LEO 1455 VP (ZEISS, Германия) с блоками рентгеновского энергетического спектрометра INCA Energy-300 и рентгеновского волнового спектрометра INCA Wave-500.

Результаты исследований. Наплавка сплавов титан–алюминий в установленном диапазоне режимов обеспечивает формирование валиков со стабильными геометрическими параметрами.

С увеличением скорости подачи присадочной проволоки увеличивалось содержание алюминия и алюминия и кремния при использовании силуминовой присадочной проволоки в наплавленном металле, в связи с увеличением массового расхода проволоки и уменьшения площади проплавления основного металла (рис. 1). Содержание алюминия в наплавленном металле в зависимости от режимов наплавки и применяемой присадочной проволоки находилось в пределах 9 %...42 %. Содержание кремния в наплавленном металле при применении проволоки СвАК5 составляло 0,6 %...3,5 %, а при применении проволоки СвАК12 – 1,2 %...6,8 %. При легировании цирконием и ниобием содержание алюминия в наплавленном металле снижалось на 1 %...5 % в зависимости от скорости подачи присадочной проволоки и объема вводимого

легирующего компонента. Содержание циркония в наплавленном металле составляло 2,5 %...7,5 % в зависимости от количества проволок в укладке. Содержание ниобия составляло 6 %...8,5 % при использовании одной проволоки, 14,5 %...17,5 % при использовании двух проволок ниобия, а при укладке в три ряда содержание ниобия доходило до 21,3 %.

Рис. 1. Зависимость содержания алюминия от скорости подачи алюминиевой и алюминиево-кремниевой присадочной проволоки

В зависимости от содержания алюминия, исходя из диаграммы состояния титан–алюминий, структура наплавленного металла представлена фазами: α ; α_2 (Ti₃Al) + α ; α_2 (Ti₃Al); α_2 + γ (TiAl); γ (TiAl) [7]. При содержании кремния более 1,5 % в структуре наплавленного металла наблюдаются включения силицидов титана. Исходя из химического состава вероятно это фазы Ti₃Si и Ti₅(AlSi)₃ [8–11]. Цирконий при введении в жидкометаллическую ванну легировал алюминиды титана, благодаря значительной его растворимости в фазах: α ; α_2 , γ [12,13].

Исследования жаростойкости при выдержке в течение 700 ч при температуре 800 °С показали, что потеря массы наплавленных образцов из сплавов системы титан–алюминий в зависимости от содержания алюминия составляла 2 %...20 % (рис. 2).

Применение присадочной проволоки СвАК5 заметно повышает жаростойкость наплавленного металла. Значительное повышение жаростойкости особенно наблюдается при содержании алюминия 10 %...25 % (по массе). Потеря массы образцов при этом уменьшается в 3-4 раза. Применение присадочной проволоки СвАК12 еще больше повышает жаростойкость наплавленного металла.

Повышение жаростойкости связано с легированием поверхностных слоев наплавленного металла кремнием и снижением скорости окисления сплавов системы титан–алюминий. Кремний способствует образованию на поверхности наплавленного металла стабильного оксидного слоя на основе Al₂O₃, что обедняет содержание алюминия на поверхности металла и обеспечивает формирование между оксидным слоем и металлом слоя на основе силицидов и оксидов титана [3–5].

Легирование цирконием повышает жаростойкость наплавленного металла, что также отмечалось в [12]. Особенно значительно повышается жаростойкость при скоростях подачи алюминиевой проволоки 1...3 м/мин и содержании алюминия от 8 % до 30 %. Потеря массы этих образцов уменьшалась в 1,5–2 раза при однорядной укладке циркония и в 2–4 раза при двухрядной (рис. 3). Совместное легирование кремнием и цирконием наплавленного металла снижает потерю массы образцов в 4–10 раз по сравнению с нелегированными наплавленными алюминидами титана (см. рис. 3). При содержании алюминия более 20 % и легировании алюминидов титана кремнием и цирконием масса образцов увеличивалась из-за более прочной связи окисленного слоя с основным металлом и невозможностью его удаления при испытаниях.

Рис. 2. Потеря массы образцов при испытаниях на жаростойкость в зависимости от скорости подачи при использовании различных присадочных проволок

При дополнительном легировании наплавленного металла ниобием наблюдалось увеличение массы образцов, но не более чем на 2 % (рис. 4). Применение присадочной проволоки СвАК12 совместно с легированием ниобием также повышает жаростойкость наплавленного металла. Потеря массы

образцов при этом составляла не более 1,5 %, а при скорости подачи присадочной проволоки 4 м/мин – не более 0,2 %.

Рис. 3. Потеря массы образцов при испытаниях на жаростойкость в зависимости от скорости подачи при использовании различных присадочных проволок с дополнительным легированием цирконием

Рис. 4. Потеря массы образцов при испытаниях на жаростойкость в зависимости от скорости подачи при использовании различных присадочных проволок с дополнительным легированием цирконием

Выводы.

1. Жаростойкость наплавленного металла зависит от содержания алюминия и кремния. Увеличение содержания алюминия в пределах 10 %...42 % (по массе) и кремния в пределах 0,6 %...6,8 % (по массе) повышает жаростойкость наплавленного металла. Повышение жаростойкости связано с образоваием на поверхности наплавленного металла оксидных слоев, содержащих Al₂O₃. Кремний способствует формированию на сплавах системы титан–алюминий оксидных слоев на основе Al₂O₃.

2. Легирование ниобием и цирконием наплавленных сплавов системы титан–алюминий повышает их жаростойкость. Особенно эффективно комбинированное легирование этими элементами с кремнием.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. Колачев, Б. А. Металловедение и термическая обработка цветных металлов и сплавов / Б. А. Колачев. – Москва: МИСИС, 2005. – 432 с.

2. Ковтунов, А. И. Влияние режимов наплавки на структуру и свойства покрытий системы титан–алюминий / А. И. Ковтунов, Д. И. Плахотный, А. А. Гущин // Сварка и диагностика. – 2016. – № 2. – С. 35–37.

3. Даутов, С. С. Дегратация поверхности лопаток авиационных двигателей ГТД из интерметаллидного сплава TNM-B1 и разработка способов их защиты: дис. ... канд. техн. наук: 05.07.05 / С. С. Даутов. – Уфа, 2017. – 135 л.

4. Yang, M.-R. Oxidation Resistance Improvement of TiAl Intermetallics Using Surface Modification / M.-R. Yang, S. Wu-K // Bulletin of the College of Engineering. – 2003. – Vol. 89. – P. 3–19.

5. **Rahmel, A.** Thermodynamic Aspects of TiAl and TiSi2 oxidation: The Al–Ti–O and Si–Ti–O phase diagrams / A. Rahmel, P. J. Spencer // Oxidation of Metals. – 1990. – Vol. 35. – P. 53–68.

6. **Ковтунов, А. И.** Аргоно-дуговая наплавка сплавами на основе системы железо–алюминий / А. И. Ковтунов. – Тольятти: ТГУ, 2014. – 140 с.

7. Диаграммы состояния двойных металлических систем: справочник: в 3 т. / Под общ. ред. Н. П. Лякишева. – Москва: Машиностроение, 2001. – Т. 3, кн. 1. – 1872 с.

8. **Raghavan, V.** Al–Si–Ti (Aluminum–Silicon–Titanium) / V. Raghavan // J. Phase Equilb. Diffus. – 2009. – Vol. 30, № 1. – P. 83–88.

9. Электронно-ионно-плазменные методы наноструктурирования поверхностного слоя сплавов на основе титана и алюминия / А. А. Клопотов [и др.] // Взаимодействие излучений с твердым телом: материалы 10 Междунар. конф., Минск, 24–27 сент. 2013 г. – Минск, 2013. – С. 257–259.

10. **Pierre Perrot.** Al–Si–Ti (Aluminium–Silicon–Titanium) / Pierre Perrot // Landolt-Börnstein. – New Series IV/11A4.

11. **Murray, J. L.** The Si–Ti (silicon–titanium) system, phase diagrams of binary titanium alloys / J. L. Murray // ASM, Metals Park, Ohio. – 1987. – P. 289–293.

12. Isothermal section of Al–Ti–Zr ternaru system at 1273 K / F. Yang [et al.] // Journal of Alloys and Compouns. – 2014. – Vol. 585. – P. 325–330.

13. Isothermal section of Al–Ti–Zr ternaru system at 1073 K / Kai-liLÜ [et al.] // Transactions of Nonferrous Metals Society of China. – 2016. – Vol. 26, № 11. – P. 3052–3058.