МЕЖГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ»

Кафедра «Основы проектирования машин»

ДЕТАЛИ МАШИН

Методические рекомендации к практическим занятиям для студентов направления подготовки 15.03.01 «Машиностроение» дневной формы обучения

УДК 621.81 ББК 34.44 Д38

Рекомендовано к изданию учебно-методическим отделом Белорусско-Российского университета

Одобрено кафедрой «Основы проектирования машин» «5» октября 2022 г., протокол № 3

Составитель д-р техн. наук А. М. Даньков

Рецензент М. Н. Миронова

Методические рекомендации являются практическим руководством в работе студентов направления подготовки 15.03.01 «Машиностроение» дневной формы обучения при проведении практических занятий по дисциплине «Детали машин».

Учебно-методическое издание

ДЕТАЛИ МАШИН

Ответственный за выпуск А. П. Прудников

Корректор И. В. Голубцова

Компьютерная верстка Н. П. Полевничая

Подписано в печать . Формат 60×84/16. Бумага офсетная. Гарнитура Таймс. Печать трафаретная. Усл. печ. л. . Уч.-изд. л. . Тираж 26 экз. Заказ №

Издатель и полиграфическое исполнение: Межгосударственное образовательное учреждение высшего образования «Белорусско-Российский университет». Свидетельство о государственной регистрации издателя, изготовителя, распространителя печатных изданий № 1/156 от 07.03.2019. Пр-т Мира, 43, 212022, г. Могилев.

© Белорусско-Российский университет, 2022

Содержание

Введение	4
1 Практическая работа «Расчет сварных соединений»	5
2 Практическая работа «Расчет резьбовых соединений»	8
3 Практическая работа «Расчет соединений «вал – ступица»	12
4 Практическая работа «Энерго-кинематический расчет привода»	14
4.1 Исходные данные	14
4.2 Подбор приводного электродвигателя	14
4.3 Определение передаточных чисел передач, частот вращения,	
угловых скоростей, мощностей и крутящих моментов на валах	
редуктора	16
5 Практическая работа «Расчет на прочность цилиндрической	- 0
косозубой передачи	18
5.1 Выбор материалов зубчатых колес и их термообработки	18
5.2 Определение допускаемых контактных напряжений	18
5.3 Определение допускаемых напряжений изгиба	20
5.4 Проектный расчёт цилиндрической косозубой передачи	21
5.5 Проверочный расчет цилиндрической косозубой передачи	24
6 Практическая работа «Расчет на прочность конической зубчатой	
передачи»	27
6.1 Проектный расчёт конической прямозубой передачи	27
6.2 Проверочный расчет конической прямозубой передачи по крите-	_,
рию контактной прочности	29
6.3 Проверочный расчет конической прямозубой передачи	
по критерию изгибной прочности	30
7 Практическая работа «Расчет на прочность червячной передачи»	
7.1 Исходные данные	31
7.2 Материалы червяка, червячного колеса и допускаемые	<i>J</i> 1
напряжения	32
7.3 Проектный расчет червячной передачи	33
7.4 Проверочный расчет червячной передачи по критерию	33
контактной прочности	35
7.5 Проверочный расчет червячной передачи по критерию	33
изгибной прочности	36
7.6 Тепловой расчет передачи	
7.7 Проверка червяка на жесткость	37
8 Практическая работа «Проектный и проверочный расчет вала.	31
	39
Подбор и расчет подшипников качения»	
8.1 Проектный расчет вала	39
8.2 Определение реакций опор и построение эпюр изгибающих	40
и вращающих моментов.	40
8.3 Выбор и проверочный расчет подшипников тихоходного вала	45
Список литературы	48

Введение

Дисциплина «Детали машин» изучает общие для широкого круга приводов технологического оборудования элементы, осуществляющие связь источника энергии (двигателя) с рабочим органом и включающие соединения, зубчатые и червячные передачи, валы и их опоры.

Основным критерием работоспособности и расчета соединений является прочность. Необходимо стремиться к тому, чтобы соединение было равнопрочным с соединяемыми элементами. При этом желательно, чтобы соединение не искажало форму изделия, не вносило дополнительных элементов в его конструкцию и т. п. Методические рекомендации содержат примеры решения задач, позволяющие овладеть методикой их решения и приобрести навыки расчета соединений, которые студент впервые использует при выполнении расчетно-графической работы № 1.

В курсе «Детали машин» изучают механические передачи общего назначения. Все механические передачи разделяют на две основные группы: передачи, основанные на использовании трения (ременные, фрикционные); передачи, основанные на использовании зацепления (зубчатые, червячные, цепные, винтовые).

В конструкциях механизмов и машин наиболее широкое распространение получили зубчатые и червячные передачи из-за небольших габаритных размеров, способности передавать высокую нагрузку и технологичности изготовления. Студент должен обладать навыками проектирования данных передач и иметь представление не только о порядке проведения расчёта, но и критериях работоспособности, по которым осуществляется расчёт проектируемой передачи. Эти навыки будут полезными при выполнении расчетно-графической работы № 2.

Валы и их опоры в значительной мере определяют работоспособность механического привода, обеспечивая номинальное положение элементов передач при взаимодействии друг с другом. Приведенные в данных методических рекомендациях примеры расчета валов и подбора для них подшипников качения способствуют формированию у студентов навыков, необходимых при выполнении расчетно-графической работы № 3.

Обучение студентов умению самостоятельно производить проектирование механического привода и передач, входящих в привод, является одной из основных задач курса «Детали машин» и целью настоящих методических рекомендаций.

1 Практическая работа «Расчет сварных соединений»

Задача 1. Исходя из прочности прерывистых сварных швов, соединяющих диск с ободом и со ступицей (рисунок 1.1), определить передаваемую зубчатым колесом мощность P, если угловая скорость $\omega = 7$ с⁻¹, катеты швов: у обода $k_1 = 6$ мм, у ступицы $k_2 = 8$ мм, размеры $d_c = 140$ мм, $D_0 = 550$ мм, d = 600 мм. Отношение длины промежутков к длине сварных швов $\chi = 8$.

Рисунок 1.1

Решение

Крепления зубчатого венца с диском и ступицы с диском представляют собой тавровые сварные соединения, нагруженные моментом T. От действия сил в зацеплении сварные швы разгружены. Допускаемое напряжение на срез сварных швов выбираем, исходя из допускаемого напряжения на растяжение для стали Ст3. Принимаем для стали Ст3 [σ_p] = 125 МПа. Тогда допускаемое напряжение на срез для ручной дуговой сварки будет

$$[\tau'] = 0.6 \cdot [\sigma_p] = 0.6 \cdot 125 = 75 \text{ M}\Pi a.$$

Из условия прочности двух сварных швов у обода

$$\tau = 2T_o/2 \cdot 0, 7 \cdot k_1 \cdot \left[\pi \cdot D_o^2/(\chi + 1) \right] \leq \left[\tau' \right]$$

найдем величину крутящего момента, который способны выдержать сварные швы:

$$T_o = \frac{0.7 \cdot k_1 \cdot \pi \cdot D_O^2 \cdot \left[\tau'\right]}{\chi + 1} = \frac{0.7 \cdot 6 \cdot \pi \cdot 550^2 \cdot 75}{9} = 33261612, 2 \,\mathrm{H} \cdot \mathrm{mm} \approx 33262 \,\,\mathrm{H} \cdot \mathrm{m}.$$

Эта формула может быть использована и для определения крутящего момента, воспринимаемого сварными швами у ступицы. Для этого скорректируем ее:

$$T_c = \frac{0.7 \cdot k_2 \cdot \pi \cdot D_c^2 \cdot \left[\tau'\right]}{\chi + 1} = \frac{0.7 \cdot 8 \cdot \pi \cdot 140^2 \cdot 75}{9} = 2873510,1 \text{H} \cdot \text{mm} \approx 2874 \, \text{H} \cdot \text{m}.$$

Передаваемая зубчатым колесом мощность будет определяться меньшим по величине крутящим моментом, а именно

$$P = T_c \cdot \omega = 2874 \cdot 7 = 20118 \text{ BT} \approx 20 \text{ κBt}.$$

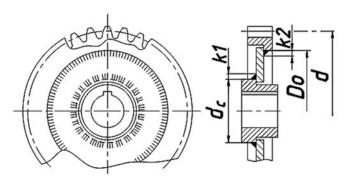


Рисунок 1.2

Решение

Задача 2. Проверить прочность сплошных сварных швов, соединяющих диск с зубчатым ободом и диск со ступицей (рисунок 1.2). Передаваемая колесом мощность P = 30 кВт, угловая скорость $\omega = 7$ с⁻¹, катеты швов $k_1 = 6$ мм, $k_2 = 3$ мм, размеры $d_c = 135$ мм, $D_0 = 575$ мм, d = 600 мм. Материал диска, ступицы и обода – сталь Ст3 ($[\sigma_p] = 125$ МПа).

Определим допускаемое напряжение на срез для сварных швов при ручной дуговой сварке электродами Э 42 и заданном материале деталей:

$$[\tau'] = 0.6 [\sigma_p] = 0.6 \cdot 125 = 75 \text{ M}\Pi a.$$

Рассчитаем крутящий момент, передаваемый колесом:

$$T = \frac{P}{\omega} = \frac{30000}{7} = 4285,7 \text{ H} \cdot \text{m}.$$

Окружная сила в зацеплении

$$F_t = \frac{2 \cdot T}{d} = \frac{2 \cdot 4285, 7 \cdot 10^3}{600} = 14285, 7 \text{ H}.$$

Радиальная сила в зацеплении

$$F_r = F_t \cdot \text{tg } \alpha = 14285, 7 \cdot \text{tg} = 20^\circ = 5199, 6 \text{ H}.$$

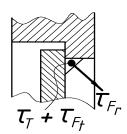
В заданной конструкции зубчатого колеса сварные швы нагружены всеми тремя силовыми факторами. Определяем напряжения для сварного шва у обода от действия каждого из силовых факторов:

- напряжения от крутящего момента

$$\tau_T = \frac{2 \cdot T}{0, 7 \cdot k_2 \cdot \pi \cdot D_o^2} = \frac{2 \cdot 4285, 7 \cdot 10^3}{0, 7 \cdot 3 \cdot \pi \cdot 575^2} = 3,93 \text{ M}\Pi\text{a};$$

- напряжения от окружной силы

$$\tau_{F_t} = \frac{F_t}{0, 7 \cdot k_2 \cdot \pi \cdot D_o} = \frac{14285, 7}{0, 7 \cdot 3 \cdot \pi \cdot 575} = 3,77 \text{ M}\Pi\text{a};$$


- напряжения от радиальной силы

$$\tau_{F_r} = \frac{F_r}{0.7 \cdot k_2 \cdot \pi \cdot D_O} = \frac{5199.6}{0.7 \cdot 3 \cdot \pi \cdot 575} = 1.37 \text{ M}\Pi a.$$

Векторы этих напряжений для случая, когда сопряженная шестерня находится сверху от зубчатого колеса, приведены на рисунке 1.3. Тогда суммарные напряжения в сварном шве у обода

$$\tau_o = \sqrt{\left(\tau_T + \tau_{F_t}\right)^2 + \tau_{F_t}^2} = \sqrt{\left(3.93 + 3.77\right)^2 + 1.37^2} = 7.82 \text{ M}\Pi\text{a} << \left[\tau'\right] = 75 \text{ M}\Pi\text{a}.$$

Швы у ступицы также рассчитываются на совместное действие крутящего момента, окружной силы и радиальной силы. Определяем напряжения в сварном шве у ступицы:

- напряжения от момента

$$\tau_T = \frac{2 \cdot T}{0, 7 \cdot k_1 \cdot \pi \cdot d_c^2} = \frac{2 \cdot 4285, 7 \cdot 10^3}{0, 7 \cdot 6 \cdot \pi \cdot 135^2} = 35,64 \text{ M}\Pi a;$$

– напряжения от окружной силы

Рисунок 1.3

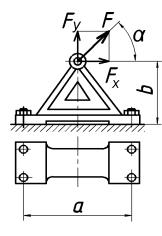
$$\tau_{F_t} = \frac{F_t}{0.7 \cdot k_1 \cdot \pi \cdot d_c} = \frac{14285.7}{0.7 \cdot 6 \cdot \pi \cdot 135} = 8.02 \text{ M}\Pi a;$$

– напряжения от радиальной силы

$$\tau_{F_r} = \frac{F_r}{0.7 \cdot k_1 \cdot \pi \cdot d_c} = \frac{5199.6}{0.7 \cdot 6 \cdot \pi \cdot 135} = 2.92 \text{ M}\Pi a.$$

Суммарные напряжения при этом

$$\tau_{c} = \sqrt{\left(\tau_{T} + \tau_{F_{t}}\right)^{2} + \tau_{F_{t}}^{2}} = \sqrt{\left(35,64 + 8,02\right)^{2} + 2,92^{2}} = 43,76 \text{ M}\Pi\text{a} < \left[\tau'\right] = 75 \text{ M}\Pi\text{a}.$$


Основную долю в суммарных напряжениях составляют напряжения от момента. Исходя из этого, оценим длину шва у обода, при которой недогрузка шва будет приемлемой.

$$l_{uea} = \frac{2 \cdot T}{0, 7 \cdot k_2 \cdot D_o \cdot [\tau']} = \frac{2 \cdot 4285, 7 \cdot 10^3}{0, 7 \cdot 3 \cdot 575 \cdot 75} = 94,6 \text{ mm}.$$

Длину шва можно принять равной 100 мм, что примерно в 18 раз меньше периметра шва $\left[\left(\pi\cdot D_{\scriptscriptstyle O}\right)/l_{\scriptscriptstyle u\!u\!s\!a}=\left(\pi\cdot 575\right)/100=18,06\right]$.

2 Практическая работа «Расчет резьбовых соединений»

Задача 1. Определить силу F, если диаметр фундаментных болтов с метрической резьбой, крепящих стойку к основанию, d=16 мм (рисунок 2.1). Коэффициент трения основания стойки о бетон f=0,4, угол $\alpha=45^{\circ}$, размеры a=650 мм, b=550 мм. Недостающие величины выбрать самостоятельно. Обеспечить минимальные габаритные размеры основания стойки.

Решение

Принимаем для изготовления болтов сталь 35, для которой предел текучести $\sigma_T = 300$ МПа. Заданная резьба находится в интервале резьб, для которых коэффициент запаса прочности $s_T = 4...2,5$. Принимая $s_T = 3$, определим допускаемые напряжения для болтов:

 $\left[\sigma_{p}\right] = \frac{\sigma_{T}}{S_{T}} = \frac{300}{3} = 100 \text{ M}\Pi a.$

Рисунок 2.1

Болты соединения обеспечивают нераскрытие стыка кронштейна с основанием. Внутренний диаметр резьбы М16 $d_1 = 13,835$ мм.

Разложим силу F на горизонтальную и вертикальную составляющие и перенесем в центр тяжести стыка, при этом возникнет момент от горизонтальной составляющей. Таким образом:

- сила $F_x = F \cos \alpha = F \cos 45^\circ \approx 0,707 F$ сдвигает детали в стыке;
- сила $F_y = F \sin \alpha = F \sin 45^{\circ} \approx 0,707F$ раскрывает стык;
- момент $M = F_x b = F_x \cdot 0,55 = 389F$ раскрывает стык.

Задаемся размерами стыка, стремясь обеспечить минимальные размеры опорной поверхности кронштейна. В соответствии с нормами (места под гаечные ключи) расстояние между осями болтов в вертикальном ряду c=48 мм. Зададимся расстоянием от края основания до оси отверстия под болт, приняв его равным 20 мм. Тогда длина основания A=690 мм, ширина E=88 мм, ширина выемки C=610 мм.

Определим силу затяжки по условию нераскрытия стыка, для чего определим напряжения в стыке от силы F_y :

$$\sigma_{F_y} = \frac{F_y}{A_{cm}} = \frac{0.707 \cdot F}{7040} = 0.0001 \cdot F,$$

где A_{cm} – площадь стыка, $A_{cm} = E \cdot (A - C) = 88 \cdot (690 - 610) = 7040 \text{ мм}^2$.

Напряжения в стыке от действия изгибающего момента рассчитаем следующим образом:

$$\sigma_M = \frac{M}{W_{cm}} = \frac{389 \cdot F}{24523,7} = 0,0159 \cdot F,$$

где W_{cm} – момент сопротивления стыка, для прямоугольного несплошного стыка

$$W_{cm} = \frac{E \cdot (A^3 - C^3)}{6 \cdot A} = \frac{88 \cdot (690^3 - 610^3)}{6 \cdot 690} = 24523,7 \text{ mm}^3.$$

Определяем напряжение в стыке от затяжки:

$$\sigma_{3am} = K \cdot (\sigma_{Fv} + \sigma_{M}) = 1.5 \cdot (0.0001 \cdot F + 0.0159 \cdot F) = 0.016 \cdot F,$$

где K – коэффициент запаса по условию нераскрытия стыка, K = 1,5. Рассчитаем силу затяжки по условию нераскрытия стыка:

$$F_{sam} = \frac{\sigma_{sam} \cdot A_{cm}}{z} = \frac{0.016F \cdot 7040}{4} = 28.16 F,$$

где z – количество болтов в соединении, z = 4.

Определяем силу затяжки по условию отсутствия сдвига:

$$F_{\text{\tiny 3am}} = \frac{K' \cdot F_{x} + (1 - \chi) \cdot F_{y} \cdot f}{z \cdot f} = \frac{1,5 \cdot 0,707 \cdot F + (1 - 0,25) \cdot 0,707 \cdot F \cdot 0,1}{4 \cdot 0,1} = \frac{(1,06 + 0,05) \cdot F}{0.4} = 1,114 \cdot F,$$

где χ – коэффициент внешней нагрузки, χ = 0,25;

f – коэффициент трения в стыке, f = 0,1;

z – количество болтов в соединении, z = 4.

В дальнейших расчетах будет участвовать сила затяжки болтов по условию нераскрытия стыка деталей как наибольшая.

Определим внешнюю нагрузку, действующую на один болт:

$$F_{e} = F_{F_{y}} + F_{M} = \frac{F_{y}}{z} + \frac{M}{i \cdot a} = \frac{0,707 \cdot F}{4} + \frac{389 \cdot F}{2 \cdot 650} = 0,476 \cdot F,$$

где i – число болтов в поперечном ряду, i = 2.

Определим расчетную нагрузку F_p болта:

$$F_p = 1.3 \cdot F_{sam} + 0.25 \cdot F_6 = 1.3 \cdot 28.16 \cdot F + 0.25 \cdot 0.476 \cdot F = 36.727 \cdot F.$$

Из условия прочности болта

$$\sigma = \frac{4 \cdot F_p}{\pi \cdot d_1^2} = \frac{4 \cdot 36,727 \cdot F}{\pi \cdot d_1^2} \leq \left[\sigma_p\right],$$

где d_1 – внутренний диаметр резьбы М16, d_1 = 13,835 мм. Найдем силу F:

$$F = \frac{\pi \cdot d_1^2 \cdot \left[\sigma_p\right]}{4 \cdot 36,727} = \frac{\pi \cdot 13,835^2 \cdot 100}{4 \cdot 36,727} = 409,32 \text{ H}.$$

 $\it 3adaua$ 2. Рассчитать болты крепления кронштейна, нагруженного в соответствии со схемой $\it F_\Sigma = 20000~\rm H$; $\it l = 1050~\rm mm$; $\it a = 130~\rm mm$; $\it b = 500~\rm mm$; $\it b = 500~\rm mm$; $\it b = 500~\rm mm$; кронштейн стальной; болты из стали $\it 20~\rm (\sigma_{\it T} = 230~\rm M\Pi a)$; количество болтов $\it z = 6~\rm mm$.; затяжка не контролируемая (рисунок 2.2). Расчет выполнить для двух вариантов установки болтов: без зазора и с зазором.

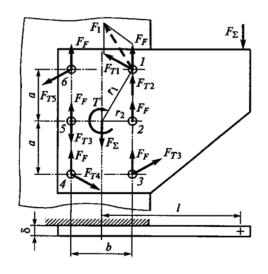


Рисунок 2.2

Решение

1 Болты поставлены без зазора.

Переносим силу F_{Σ} в центр соединения. При этом соединение нагружается собственно силой F_{Σ} и моментом $T=F_{\Sigma}$ $l=20~000\cdot1050=21~000~000~\mathrm{H}\cdot\mathrm{mm}$. Найдем нагрузку от силы F_{Σ} , приходящуюся на один болт:

$$F_E = F / z = 20000 / 6 = 3333 \text{ H}.$$

Расстояния r_1 от осей болтов 1, 3, 4 и 6 до центра соединения одинаковы, так же как расстояния r_2 от осей болтов 2 и 5. Запишем выражение для момента T:

$$T = 4 \cdot F_{T1} \cdot r_1 + 2 \cdot F_{T2} \cdot r_2,$$

где F_{T1} , F_{T2} – нагрузка на соответствующие болты от момента T.

Из связывающего F_{T1} и F_{T2} соотношения $\frac{F_{T1}}{F_{T2}} = \frac{r_1}{r_2}$ найдем $F_{T2} = F_{T1} \frac{r_2}{r_1}$.

Тогда

$$T = F_{T1} \left(4 \cdot r_1 + 2 \cdot \frac{r_2^2}{r_1} \right).$$

Определим расстояния r_2 и r_1 :

$$r_2 = b/2 = 500/2 = 250 \text{ mm};$$

$$r_1 = \sqrt{r_2^2 + a^2} = \sqrt{250^2 + 130^2} = 281.8 \text{ mm}.$$

Определим нагрузку от момента:

– на первый болт:

$$F_{T1} = \frac{T}{4 \cdot r_1 + 2 \cdot \frac{r_2^2}{r_1}} = \frac{21000000}{4 \cdot 281,8 + 2 \cdot \frac{250^2}{281,8}} = 13369,2 \text{ H};$$

– на второй:

$$F_{T2} = F_{T1} \frac{r_2}{r_1} = 13369, 2 \frac{250}{281,8} = 11860,5 \text{ H}.$$

Предположительно наиболее нагруженными будут болты 1 (3) и 2. Для них определим суммарную нагрузку. Тупой угол α параллелограмма, образованного векторами F_F и F_{T1} ,

$$\alpha = \arcsin(r_2 / r_1) + 90^\circ = \arcsin(250 / 281,8) + 90^\circ = 152,5^\circ.$$

Тогда

$$F_1 = \sqrt{F_F^2 + F_{T1}^2 - 2 \cdot F_F \cdot F_{T1} \cdot \cos \alpha} =$$

$$= \sqrt{3333^2 + 13369, 2^2 - 2 \cdot 3333 \cdot 13369, 2 \cdot \cos 152, 5^\circ} = 16398 \text{ H};$$

$$F_2 = F_F + F_{T2} = 3333 + 11860, 5 = 15193, 5 \text{ H}.$$

Первый и второй болты нагружены почти одинаково, но наиболее нагружен первый болт. Определим диаметр болтов из расчета на срез. Допускаемые напряжения среза

$$[\tau] = 0.4\sigma_{T} = 0.4.230 = 92 \text{ M}\Pi a.$$

Диаметр болтов

$$d = \sqrt{\frac{4 \cdot F_1}{\pi \cdot \lceil \tau \rceil}} = \sqrt{\frac{4 \cdot 16398}{\pi \cdot 92}} = 15,06 \text{ mm}.$$

Найденной величине d удовлетворяет чистый болт под развертку по ГОСТ 7817-80 с диаметром нарезной части M16 и ненарезной 17 мм. Проверяем прочность болта на смятие:

$$\sigma_{CM} = F_1 / (d\delta) = 16398 / (17 \cdot 20) = 48.2 \text{ M}\Pi \text{a} < [\sigma_{CM}] = 0.8 \sigma_T = 0.8 \cdot 230 = 184 \text{ M}\Pi \text{a}.$$

2 Болты поставлены с зазором.

Принимаем коэффициент трения в стыке f = 0,15, а коэффициент запаса по условию отсутствия сдвига K = 1,5. Определим потребную силу затяжки болта при $F_{\max} = F_1$:

$$F_{\text{sam}} = \frac{K \cdot F_1}{f} = \frac{1,5 \cdot 16398}{0,15} = 163980 \text{ H}.$$

Резьба болта должен быть больше M30, поэтому принимаем $[s_T] = 1,5$. Тогда допускаемые напряжения для болта

$$\left[\sigma_{p}\right] = \frac{\sigma_{T}}{\left[s_{T}\right]} = \frac{230}{1,5} = 153 \text{ M}\Pi \text{a.}$$

Находим внутренний диаметр резьбы:

$$d_1 = \sqrt{\frac{4 \cdot 1, 3 \cdot F_{3am}}{\pi \cdot [\sigma]}} = \sqrt{\frac{4 \cdot 1, 3 \cdot 163980}{\pi \cdot 153}} = 42,1 \text{ MM}.$$

Такому значению d_1 удовлетворяет болт M48 с $d_1 = 42,587$ мм.

Так как болт М48 слишком велик для кронштейна заданных размеров, следует предпочесть постановку болтов без зазора или применить штифты.

3 Практическая работа «Расчет соединений «вал – ступица»

Задача 1. Определить длину призматической направляющей шпонки 1 вала 2 конической фрикционной муфты (рисунок 3.1) по следующим данным: диаметр вала 2 d = 45 мм, материал вала 2 — сталь 50, материал муфты 3 — чугун СЧ18. Момент, передаваемый муфтой, T = 345 H· м. Перемещение муфты производится под нагрузкой. Вал работает с незначительными толчками.

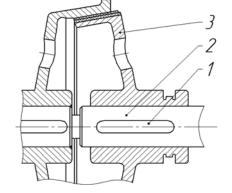


Рисунок 3.1

Решение

При заданном сочетании материалов «сталь — чугун» допускаемое напряжение $[\sigma_{cm}] = 20...30$ МПа. Принимаем $[\sigma_{cm}] = 30$ МПа.

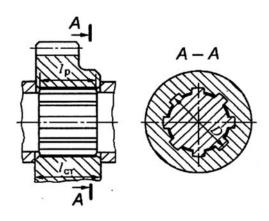
Выбираем сечение шпонки для заданного диаметра вала:

$$b \times h = 14 \times 9$$
 MM.

Условие прочности на смятие имеет вид:

$$\sigma_{\scriptscriptstyle CM} = \frac{4 \cdot T}{d \cdot h \cdot l_p} \leq [\sigma_{\scriptscriptstyle CM}],$$

откуда найдем рабочую длину шпонки:


$$l_p \ge \frac{4 \cdot T}{d \cdot h \cdot [\sigma_{cm}]} = \frac{4 \cdot 345 \cdot 10^3}{45 \cdot 9 \cdot 30} = 113,6 \text{ mm}.$$

Полная длина шпонки

$$l = l_p + b = 113,6 + 14 = 127,6$$
 mm.

Выбираем шпонку $14 \times 9 \times 140$ по ГОСТ 23360–78.

Задача 2. Подобрать шлицевое соединение зубчатого колеса с валом (рисунок 3.2). Соединение передает вращающий момент $T=210~\mathrm{H\cdot m}$. Условия эксплуатации средние. Диаметр вала $d=45~\mathrm{mm}$, материал деталей — сталь $45~\mathrm{c}$ термообработкой — улучшение, твердость $290~\mathrm{HB}$.

Решение

Принимаем, как наиболее распространенное, прямобочное шлицевое соединение с цент-

Рисунок 3.2

рированием по наружному диаметру (наружный диаметр втулки при твердости HB < 350 калибруется протяжкой). Назначаем соединению легкую серию и при d=45 мм выбираем $z\times d\times D=8\times 46\times 50$ мм, фаска f=0,4 мм. Тогда средний диаметр соединения и высота зуба соответственно

$$d_{cp} = 0.5 \cdot (D+d) = 0.5 \cdot (50+46) = 48 \text{ mm};$$

 $h = 0.5 \cdot (D-d) - 2f =$
 $= 0.5 \cdot (50-46) - 2 \cdot 0.4 = 1.2 \text{ mm}.$

Для неподвижного соединения при средних условиях эксплуатации и твердости деталей меньше 350 HB принимаем [σ_{c_M}] = 60 МПа.

Расчетную длину l зубьев определим из условия прочности на смятие:

$$\sigma_{\scriptscriptstyle CM} = \frac{2 \cdot T}{K_{\scriptscriptstyle 3} \cdot z \cdot h \cdot d_{\scriptscriptstyle CD} \cdot l} \leq [\sigma_{\scriptscriptstyle CM}],$$

откуда

$$l = \frac{2 \cdot T}{K_{_3} \cdot z \cdot h \cdot d_{_{CP}} \cdot \left[\sigma_{_{CM}}\right]} = \frac{2 \cdot 210 \cdot 10^3}{0,75 \cdot 8 \cdot 1, 2 \cdot 48 \cdot 60} = 20,25 \text{ mm},$$

где K_3 – коэффициент неравномерности распределения нагрузки между зубьями, $K_3 = 0.75$.

Длина l_{cm} ступицы колеса

$$l_{cm} = l + 6 \text{ MM} = 20,25 + 6 = 26,25 \text{ MM}.$$

Принимаем длину ступицы $l_{cm} = 28$ мм (ближайшее к расчетному значение по R_a 40) по ГОСТ 6636.

4 Практическая работа «Энерго-кинематический расчет привода»

Все алгоритмы расчетов, расчетные зависимости и справочные данные заимствованы из [1, 2].

4.1 Исходные данные

Энерго-кинематический расчет включает подбор двигателя и определение частот вращения и угловых скоростей, мощностей и крутящих моментов на всех валах привода. Выполним его для привода, схема которого представлена на рисунке 4.1, по следующим исходным данным:

- окружное усилие на барабане $F_{tPO} = 5.5$ кH;
- окружная скорость барабана $v_{PO} = 0.29$ м/с;
- диаметр барабана $D_{PO} = 250$ мм;
- срок службы редуктора 10 лет, работа трехсменная.

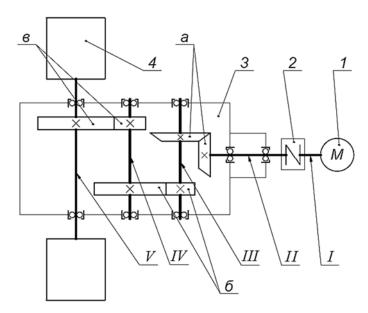
4.2 Подбор приводного электродвигателя

Выбор двигателя осуществляется по мощности, требуемой для обеспечения крутящего момента на приводном валу. Мощность $P_{\scriptscriptstyle PO}$, потребляемая рабочими органами:

$$P_{PQ} = k \cdot F_{tPQ} \cdot v_{PQ} = 2 \cdot 5, 5 \cdot 0, 29 = 3,19 \text{ kBt},$$

где k – количество рабочих органов в приводе, k = 2.

Определим общий КПД η_o привода по формуле


$$\eta_{O} = \eta_{M} \cdot \eta_{KII} \cdot \eta_{IIII}^{2} \cdot \eta_{IIII}^{4} = 0.98 \cdot 0.95 \cdot 0.97^{2} \cdot 0.99^{4} = 0.841,$$

где $\eta_{\scriptscriptstyle M}$ – КПД соединительной упругой муфты, принимаем $\eta_{\scriptscriptstyle M}$ = 0,98;

 $\eta_{_{\it KII}}$ – КПД конической передачи, принимаем $\eta_{_{\it KII}}$ = 0,95;

 $\eta_{_{\!\mathit{L\!I\!I\!I}}} - \mathrm{K}\Pi \mathrm{Д}$ цилиндрической зубчатой передачи, принимаем $\eta_{_{\!\mathit{L\!I\!I\!I}}} = 0.97;$

 $\eta_{_{\it III}}$ – КПД одной пары подшипников качения, принимаем $\eta_{_{\it III}}$ = 0,99.

I — электродвигатель; 2 — муфта упругая; 3 — редуктор; 4 — барабан; a — быстроходная ступень редуктора; 6 — промежуточная ступень редуктора; e — выходная (тихоходная) ступень редуктора; e — валы редуктора

Рисунок 4.1 – Схема привода лебедки противоугонного захвата

$$P_{ATP} = \frac{P_{PO}}{\eta_O} = \frac{3,19}{0,841} = 3,793 \text{ kBt.}$$

Найдем угловую скорость ω_{po} барабана:

$$\omega_{PO} = \frac{2 \cdot v_{PO}}{D_{PO}} = \frac{2 \cdot 0.29}{250 \cdot 10^{-3}} = 2.32 \text{ c}^{-1},$$

а затем частоту n_{PO} его вращения:

$$n_{PO} = \frac{30 \cdot \omega_{PO}}{\pi} = \frac{30 \cdot 2,32}{\pi} = 22,15 \text{ MUH}^{-1}.$$

$$n_{_{IITP}} = n_{_{PO}} \cdot u_{_{B}}' \cdot u_{_{IIP}}' \cdot u_{_{T}}' = 22,15 \cdot 4 \cdot 3 \cdot 2,5 = 664,5 \text{ мин}^{-1},$$

где $u'_{\scriptscriptstyle E}$ — ориентировочное значение передаточного числа быстроходной ступени, назначаем $u'_{\scriptscriptstyle E}=4;$

 $u'_{\it пp}$ — ориентировочное значение передаточного числа промежуточной ступени, назначаем $u'_{\it np}=3$;

 $u_{\scriptscriptstyle T}'$ — ориентировочное значение передаточного числа тихоходной ступени, назначаем $u_{\scriptscriptstyle T}'=2,5.$

Исходя из вычисленных значений $P_{_{\!\!\!\!/}\!\!\!\!/}$ и $n_{_{\!\!\!/}\!\!\!\!/}\!\!\!\!\!/}$, выбираем асинхронный электродвигатель 4A132S8У3 с частотой вращения $n_{_{\!\!\!/}\!\!\!\!/}=720$ мин $^{-1}$ и мощностью $P_{_{\!\!\!/}\!\!\!\!/}=4$ кВт, при этом условие $P_{_{\!\!\!/}\!\!\!\!/}>P_{_{\!\!\!/}\!\!\!\!/}$ выполняется.

4.3 Определение передаточных чисел передач, частот вращения, угловых скоростей, мощностей и крутящих моментов на валах редуктора

Так как привод не содержит открытых (ременных и цепных) передач, передаточное число редуктора $u_{_{PE\!\!\!/\! Z}}$ равно общему передаточному числу привода $u_{_{O}}$, определяемому по формуле $u_{_{O}}=n_{_{\! Z}}\ /\ n_{_{\! PO}}$. Тогда

$$u_{PEJI} = \frac{n_{II}}{n_{PO}} = \frac{720}{22,15} = 32,5.$$

Передаточное число промежуточной ступени определяется из выражения

$$u_{\Pi P} = \sqrt[3]{u_{PEJI}} = \sqrt[3]{32,5} = 3,19.$$

Тогда передаточное число быстроходной ступени в силу необходимости выполнения неравенства $u_{\scriptscriptstyle B}>u_{\scriptscriptstyle \Pi\!P}$ принимаем $u_{\scriptscriptstyle B}=4$, следовательно, передаточное число тихоходной ступени будет

$$u_T = \frac{u_{PEJI}}{u_E \cdot u_{IIP}} = \frac{32.5}{4 \cdot 3.19} = 2.55.$$

Определяем частоты вращения валов редуктора:

– быстроходного:

$$n_{\text{II}} = n_{\text{I}} = n_{\pi} = 720 \text{ мин}^{-1};$$

- первого промежуточного:

$$n_{\text{III}} = n_{\text{II}} / u_{\text{E}} = 720 / 4 = 180 \text{ MuH}^{-1};$$

– второго промежуточного:

$$n_{\text{IV}} = n_{\text{III}} / u_{\text{IIP}} = 180 / 3,19 = 56,43 \text{ MuH}^{-1};$$

- тихоходного:

$$n_{\rm V} = n_{\rm IV} / u_{\rm T} = 56,43 / 2,55 = 22,13 \,\mathrm{MuH}^{-1}.$$

Расхождение между n_{v} и n_{po} находится на уровне арифметической погрешности, возникающей при округлении полученных результатов вычислений, поэтому в дальнейших расчетах будем использовать величину $n_{v} = 22,15$ мин⁻¹.

Определяем угловые скорости валов редуктора:

$$\omega_{\text{II}} = \omega_{\text{I}} = \frac{\pi \cdot n_{\text{A}}}{30} = \frac{\pi \cdot 720}{30} = 75, 4 \text{ c}^{-1};$$

$$\omega_{\text{III}} = \frac{\pi \cdot n_{\text{III}}}{30} = \frac{\pi \cdot 180}{30} = 18,85 \text{ c}^{-1};$$

$$\omega_{\text{IV}} = \frac{\pi \cdot n_{\text{IV}}}{30} = \frac{3,14 \cdot 56,43}{30} = 5,91 \text{ c}^{-1};$$

$$\omega_{\text{V}} = \frac{\pi \cdot n_{\text{V}}}{30} = \frac{\pi \cdot 22,15}{30} = 2,32 \text{ c}^{-1}.$$

Определяем мощности на валах редуктора, используя в расчетах потребную мощность двигателя, т. е. $P_{\rm I} = P_{\it JTP} = 3,793~{\rm kBT}$:

$$P_{\text{II}} = P_{\text{I}} \cdot \eta_{M} \cdot \eta_{\Pi\Pi} = 3,793 \cdot 0,98 \cdot 0,99 = 3,68 \text{ кВт;}$$
 $P_{\text{III}} = P_{\text{II}} \cdot \eta_{K\Pi} \cdot \eta_{\Pi\Pi} = 3,68 \cdot 0,95 \cdot 0,99 = 3,46 \text{ кВт;}$
 $P_{\text{IV}} = P_{\text{III}} \cdot \eta_{L\Pi} \cdot \eta_{\Pi\Pi} = 3,46 \cdot 0,97 \cdot 0,99 = 3,32 \text{ кВт;}$
 $P_{\text{V}} = P_{\text{IV}} \cdot \eta_{\Pi\Pi} \cdot \eta_{\Pi\Pi} = 3,32 \cdot 0,97 \cdot 0,99 = 3,19 \text{ кВт.}$

Значения P_{PO} и $P_{\rm V}$ совпали, что свидетельствует об отсутствии ошибок в расчетах.

Определяем крутящие моменты на валах редуктора:

$$T_{\text{II}} = \frac{P_{\text{II}}}{\omega_{\text{II}}} = \frac{3,68 \cdot 10^3}{75,4} = 48,81 \text{ H} \cdot \text{m};$$

$$T_{\text{III}} = \frac{P_{\text{III}}}{\omega_{\text{III}}} = \frac{3,46 \cdot 10^3}{18,85} = 183,55 \text{ H} \cdot \text{m};$$

$$T_{\text{IV}} = \frac{P_{\text{IV}}}{\omega_{\text{IV}}} = \frac{3,32 \cdot 10^3}{5,91} = 561,76 \text{ H} \cdot \text{m};$$

$$T_{\rm V} = \frac{P_{\rm V}}{\omega_{\rm V}} = \frac{3,19 \cdot 10^3}{2,32} = 1375 \text{ H} \cdot \text{M}.$$

5 Практическая работа «Расчет на прочность цилиндрической косозубой передачи»

5.1 Выбор материалов зубчатых колес и их термообработки

Для изготовления колеса и шестерни назначаем материал сталь 40X. Назначаем термообработку:

- для колеса улучшение до твердости 230...250 HB;
- для шестерни азотирование до твердости: на поверхности 50...59 HRC, в сердцевине 24...30 HRC.

5.2 Определение допускаемых контактных напряжений

Определим среднюю твердость НВ материала колеса по шкале Бринелля:

$$HB = (HB_{\min} + HB_{\max}) / 2 = (230 + 250) / 2 = 240 \text{ M}\Pi \text{a},$$

где HB_{\min} , HB_{\max} — минимальное и максимальное значения в назначенном интервале твёрдости для выбранного материал, МПа.

Тогда предел контактной выносливости $\sigma_{H \lim 2}$ для колеса:

$$\sigma_{H \lim 2} = 2 \cdot HB + 70 = 2 \cdot 240 + 70 = 550 \text{ M}\Pi a.$$

При назначенном азотировании предел контактной выносливости $\sigma_{H \, \text{lim} \, 1}$ для шестерни будет

$$\sigma_{H \lim 1} = 1050 \text{ M}\Pi a.$$

Значения коэффициента безопасности S_H выбираем в зависимости от вида термообработки: для колеса (улучшение) $S_{H2} = 1,1$; для шестерни (азотирование) $S_{H1} = 1,2$.

Аналогично вышеприведенному определим среднюю твердость шестерни:

$$HRC = (HRC_{min} + HRC_{max})/2 = (50 + 59)/2 = 54,5$$

и переведем единицы Роквелла в единицы Бринелля: 54,5HRC = 543,5HB.

Базовое число циклов $N_{H\!G}$ перемены напряжений, соответствующее пределу выносливости, рассчитывается по формуле

$$N_{HG} = 30 \cdot HB^{2,4}$$
.

Тогда для шестерни

$$N_{HG1} = 30 \cdot 543, 5^{2,4} = 11 \cdot 10^7$$
 циклов,

а для колеса

$$N_{HG2} = 30 \cdot 240^{2,4} = 1,55 \cdot 10^7$$
 циклов.

Рассчитаем срок службы t_{Σ} передачи в часах:

$$t_{\Sigma} = N_{\Gamma} \cdot N_{H} \cdot N_{ZH} \cdot N_{CM} \cdot t_{CM} = 10 \cdot 50 \cdot 5 \cdot 3 \cdot 8 = 60000$$
 ч,

где N_{Γ} – количество лет службы привода, $N_{\Gamma} = 10$ лет;

 N_{H} — количество недель в году, N_{H} = 50;

 $N_{\it ДH}$ — количество рабочих дней в неделю, $N_{\it ДH}$ = 5;

 N_{CM} – количество рабочих смен в день, $N_{CM} = 3$;

 t_{CM} – количество часов в смену, $t_{CM} = 8$.

Эквивалентное (соответствующее сроку службы) число циклов $N_{\rm HE}$ перемены напряжений для шестерни и колеса рассчитывается по формуле

$$N_{HE} = \mu_H \cdot 60 \cdot c \cdot n \cdot t_{\Sigma},$$

где μ_H — коэффициент режима работы, для постоянного режима работы μ_H = 1; c — число зацеплений зуба за один поворот колеса (в данном случае c = 1); n — частота вращения шестерни или колеса, мин $^{-1}$.

Тогда для шестерни при $n = n_{\text{IV}} = 56,43 \text{ мин}^{-1}$

$$N_{HE1} = 1.60 \cdot 1.56,43.60000 = 20,3.10^7$$
 циклов;

для колеса при $n=n_{
m V}=22{,}13~{
m MuH}^{-1}$

$$N_{{\it HE}2} = \ 1 \cdot 60 \cdot 1 \cdot 22,\! 13 \cdot 60000 = 7,\! 97 \cdot \! 10^7$$
 циклов.

Коэффициент долговечности $Z_{\scriptscriptstyle N}$ рассчитывается по формуле

$$Z_N = \sqrt[6]{N_{HG}/N_{HE}}$$
.

Тогда для шестерни получаем $Z_{N1} = \sqrt[6]{11 \cdot 10^7/20, 3 \cdot 10^7} = 0,903$, принимаем

 Z_{N1} = 1, а для колеса $Z_{N2} = \sqrt[6]{1,55\cdot 10^7/7,97\cdot 10^7} = 0,76$, принимаем Z_{N2} = 1. Допускаемые контактные напряжения [σ_H] рассчитываются по формуле

$$\left[\sigma_{H}\right] = \frac{\sigma_{H \, \text{lim}}}{S_{H}} \cdot Z_{N},$$

компоненты которой определены были ранее, поэтому имеем для шестерни $\left[\sigma_H\right]_1 = \left(1050/1,2\right) \cdot 1 = 875 \ \text{М}\Pi \text{a}$, а для колеса $\left[\sigma_H\right]_2 = \left(550/1,1\right) \cdot 1 = 500 \ \text{M}\Pi \text{a}$.

Теперь определим расчетные допускаемые контактные напряжения:

$$\left[\sigma_{H}\right] = \left(\left[\sigma_{H}\right]_{1} + \left[\sigma_{H}\right]_{2}\right) / 2 \le 1,25\left[\sigma_{H}\right]_{\min}$$

где $\left[\sigma_{H}\right]_{\min}$ — меньшее из напряжений $\left[\sigma_{H}\right]_{1}$ и $\left[\sigma_{H}\right]_{2}$.

Тогда

$$[\sigma_H] = (875 + 500)/2 = 687,5 \text{ M}\Pi \text{a} > 625 \text{ M}\Pi \text{a}.$$

Таким образом, в качестве расчетных допускаемых напряжений принимаем $[\sigma_H]$ = 625 МПа.

5.3 Определение допускаемых напряжений изгиба

Определяем предел изгибной выносливости для шестерни:

$$\sigma_{F \text{ lim 1}} = 12 \cdot HRC_{cep \partial u} + 300 = 12 \cdot 32 + 300 = 684 \text{ M}\Pi a,$$

где $HRC_{cep\partial u}$ — среднее арифметическое крайних значений интервала твердости сердцевины зуба, $HRC_{cep\partial u}$ = (24+40) / 2=32 МПа.

Предел изгибной выносливости для колеса

$$\sigma_{F \text{lim}2} = 1.8 \text{HB} = 1.8 \cdot 240 = 432 \text{ M}\Pi \text{a}.$$

При расчетах допускаемых напряжений изгиба базовое число циклов N_{FG} для всех сталей $N_{FG}=4\cdot 10^6$ циклов, а эквивалентные числа циклов для шестерни и колеса определяются по формуле

$$N_{FE} = \mu_F \cdot 60 \cdot c \cdot n \cdot t_{\Sigma},$$

где μ_F – коэффициент режима работы, при постоянном режиме работы μ_F = 1. Тогда для шестерни

$$N_{FE1} = 1 \cdot 60 \cdot 1 \cdot 56,43 \cdot 60000 = 20,3 \cdot 10^7$$
 циклов,

а для колеса

$$N_{{\scriptscriptstyle FE}\,{\scriptscriptstyle 2}} = 1 \cdot 60 \cdot 1 \cdot 22, 13 \cdot 60000 = 7,97 \cdot 10^7$$
 циклов.

Коэффициент долговечности для шестерни при твердости рабочей поверхности зубьев более 350 HB и нешлифованной после азотирования переходной поверхностью определяется по формуле

$$Y_{N1} = \sqrt[9]{N_{FG}/N_{FE1}} = \sqrt[9]{4 \cdot 10^6/20, 3 \cdot 10^7} = 0,65.$$

Принимаем $Y_{N1} = 1$.

Твердость колеса менее 350 HB, поэтому коэффициент долговечности для колеса будет

$$Y_{N2} = \sqrt[6]{N_{FG}/N_{FE2}} = \sqrt[6]{4 \cdot 10^6/7,97 \cdot 10^7} = 0,607.$$

Также принимаем $Y_{N2} = 1$.

Полагаем работу привода нереверсивной (односторонняя нагрузка), поэтому коэффициент $Y_{\scriptscriptstyle A}$, учитывающий влияние двустороннего приложения нагрузки, принимаем $Y_{\scriptscriptstyle A}=1$.

Коэффициент безопасности S_F при назначенных материале и термообработке зубчатых колес будет $S_F = S_{F1} = S_{F2} = 1,75$.

Допускаемые напряжения изгиба для зубчатых колес рассчитываются по формуле

$$\left[\sigma_F\right] = \frac{\sigma_{F \text{ lim}}}{S_F} Y_A \cdot Y_N.$$

Тогда для шестерни имеем

$$\left[\sigma_{F}\right]_{1} = \frac{\sigma_{F \text{ lim 1}}}{S_{F1}} Y_{A} \cdot Y_{N1} = \frac{684}{1,75} \cdot 1 \cdot 1 = 390,86 \text{ M}\Pi a,$$

а для колеса

$$\left[\sigma_F\right]_2 = \frac{\sigma_{F \text{ lim 2}}}{S_{F2}} Y_A \cdot Y_{N2} = \frac{432}{1,75} \cdot 1 \cdot 1 = 246,86 \text{ M}\Pi a.$$

5.4 Проектный расчёт цилиндрической косозубой передачи

Проектный расчет закрытых зубчатых передач выполняется по критерию контактной прочности. В соответствии с принятой методикой расчета при несимметричном расположении колёс относительно опор и при твердости зубьев колеса $HB < 350~\mathrm{HB}$ назначаем коэффициент ψ_{ba} ширины колеса относительно межосевого расстояния $\psi_{ba} = 0.35$.

Коэффициент ψ_{bd} ширины колеса относительно делительного диаметра рассчитываем по формуле

$$\psi_{bd} = 0.5 \cdot \psi_{ba} \cdot (u_T + 1) = 0.5 \cdot 0.35 \cdot (2.55 + 1) = 0.62.$$

Назначаем 8-ю степень точности изготовления колёс по всем нормам точности ($n_{CT}=8$) и определяем коэффициент $K_{H\alpha}$ распределения нагрузки между зубьями по формуле

$$K_{H\alpha} = 1 + 0.25 \cdot (n_{CT} - 5) = 1 + 0.25 \cdot (8 - 5) = 1.75 > 1.6.$$

Так как неравенство $K_{H\alpha} \le 1,6$ не выполняется, принимаем $K_{H\alpha} = 1,6$.

Коэффициент $K_{H\beta}$ концентрации нагрузки зависит от твердости поверхности зубьев, расположения зубчатых колес относительно опор и коэффициента ψ_{bd} . В данном случае $K_{H\beta}=1{,}08$.

Определим делительный диаметр d_1 шестерни косозубой передачи по формуле

$$d_{1} = 1, 2 \cdot \sqrt[3]{\frac{E_{\Pi P} \cdot T_{\text{IV}} \cdot K_{H\alpha} \cdot K_{H\beta}}{\left[\sigma_{H}\right]^{2} \psi_{bd}} \cdot \left(\frac{u_{T} \pm 1}{u_{T}}\right)} =$$

$$=1,2\cdot\sqrt[3]{\frac{2,1\cdot10^{11}\cdot561,76\cdot1,6\cdot1,08}{(625\cdot10^6)^2\cdot0,62}\left(\frac{2,55+1}{2,55}\right)}=0,1264\text{ m}=126,4\text{ mm},$$

где $E_{\it ПP}$ — приведенный модуль упругости материала зубчатых колес, для сталей $E_{\it ПP}=2,1\cdot 10^{11}~\Pi a.$

Определим ширину $b_{_{\scriptscriptstyle W}}$ зубчатых колес передачи (равна длине контактной линии) по формуле

$$b_w = d_1 \cdot \psi_{bd} = 126, 4 \cdot 0, 62 = 78,37 \text{ MM}.$$

Принимаем $b_w = 78$ мм. Тогда ширина зубчатого колеса $b_2 = b_w = 78$ мм, а ширина шестерни $b_1 = b_2 + 4 = 82$ мм.

Определим нормальный модуль m_n зацепления по формуле

$$m_n = b_w/\psi_m = 78/25 = 3{,}12 \text{ MM},$$

где ψ_m – коэффициент модуля, принимаем $\psi_m = 25$.

По ГОСТ 9563–80 назначаем стандартный модуль $m_n = 3$ мм.

Зададимся значением коэффициента ε_{β} осевого перекрытия $\varepsilon_{\beta}=1,4$ и определим предварительную величину угла β наклона зубьев по формуле

$$\beta = \arcsin \left[\left(\varepsilon_{\beta} \cdot \pi \cdot m_n \right) / b_w \right] = \arcsin \left[\left(1, 4 \cdot \pi \cdot 3 \right) / 78 \right] = 9,74^{\circ}.$$

Определим число зубьев шестерни:

$$z_1 = (d_1 \cdot \cos \beta)/m_n = (126, 4 \cdot \cos 9, 74^\circ)/3 = 41,54.$$

Принимаем $z_1 = 42$ и определяем число зубьев колеса:

$$z_2 = z_1 \cdot u_T = 42 \cdot 2,55 = 107,1.$$

Принимаем $z_2 = 107$.

Определяем межосевое расстояние передачи:

$$a_w = m_n \cdot (z_1 + z_2) / (2 \cdot \cos \beta) = 3 \cdot (42 + 107) / (2 \cdot \cos 9, 74^\circ) = 226,77 \text{ MM}.$$

Принимаем $a_{\scriptscriptstyle w}$ = 230 мм и уточняем величину угла наклона зубьев по формуле

$$\beta = \arccos \left[m_n \cdot (z_1 + z_2) / (2 \cdot a_W) \right] = \arccos \left[3 \cdot (42 + 107) / (2 \cdot 230) \right] = 13,65^{\circ} (13^{\circ}39').$$

Делительные диаметры шестерни и колеса определяем по формуле

$$d_i = m_n \cdot z_i / \cos \beta.$$

Тогда для шестерни получаем

$$d_1 = m_n \cdot z_1 / \cos \beta = 3 \cdot 42 / \cos 13,65^\circ = 129,66 \text{ MM},$$

а для колеса

$$d_2 = m_n \cdot z_2 / \cos \beta = 3.107 / \cos 13,65^\circ = 330,33 \text{ MM}.$$

Для определения диаметров вершин зубьев зубчатых колес воспользуемся формулой

$$d_{ai} = d_i + 2 \cdot m_n$$

и в результате получим для шестерни

$$d_{a1} = d_1 + 2 \cdot m_n = 129,66 + 2 \cdot 3 = 135,66 \text{ mm},$$

а для колеса

$$d_{a2} = d_2 + 2 \cdot m_n = 330,33 + 2 \cdot 3 = 336,33 \text{ MM}.$$

Для определения диаметров впадин зубчатых колес служит формула

$$d_{fi} = d_i - 2.5 \cdot m_n,$$

позволяющая получить для шестерни

$$d_{f1} = d_1 - 2.5 \cdot m_n = 129,66 - 2.5 \cdot 3 = 122,16 \text{ MM},$$

а для колеса

$$d_{f1} = d_1 - 2, 5 \cdot m_n = 330, 33 - 2, 5 \cdot 3 = 322, 83$$
 mm.

5.5 Проверочный расчет цилиндрической косозубой передачи

Проверочный расчет зубчатых передач выполняется по двум основным критериям прочности. Для выполнения проверочного расчета по критерию контактной прочности предварительно определяем:

– коэффициент ε_{α} торцового перекрытия:

$$\varepsilon_{\alpha} = \left[0.95 - 1.6 \cdot \left(1/z_1 + 1/z_2\right)\right] \cdot \left(1 + \cos\beta\right) \cdot \cos\beta =$$

$$= \lceil 0.95 - 1.6 \cdot (1/42 + 1/107) \rceil \cdot (1 + \cos 13.65^{\circ}) \cdot \cos 13.65^{\circ} = 1.72;$$

коэффициент повышения прочности косозубых передач по контактным напряжениям:

$$Z_{HB} = \sqrt{\cos^2 \beta / \varepsilon_{\alpha}} = \sqrt{\cos^2 13,65^{\circ}/1,72} = 0,74;$$

– окружную скорость *v* зубчатых колес:

$$v = \pi \cdot d_1 \cdot n_{\text{IV}} / 60 = \pi \cdot 129,66 \cdot 10^{-3} \cdot 56,43 / 60 = 0,38 \text{ m/c};$$

- коэффициент $K_{\scriptscriptstyle Hv}$ динамической нагрузки, выбираемый в зависимости от степени точности, твердости поверхности зубьев и окружной скорости, $K_{\scriptscriptstyle Hv}=1{,}01;$
 - коэффициент K_H расчётной нагрузки:

$$K_H = K_{H\alpha} \cdot K_{H\beta} \cdot K_{H\nu} = 1,6 \cdot 1,08 \cdot 1,01 = 1,75.$$

Определим рабочие контактные напряжения из условия контактной прочности передачи

$$\sigma_{H} = 1,18 \cdot Z_{H\beta} \cdot \sqrt{\frac{E_{IIP} \cdot T_{IV} \cdot K_{H}}{d_{1}^{2} \cdot b_{w} \cdot \sin(2\alpha)}} \left(\frac{u+1}{u}\right) \leq \left[\sigma_{H}\right].$$

Подставив в расчетную формулу полученные выше результаты, получаем

$$\sigma_{H} = 1,18 \cdot 0,74 \cdot \sqrt{\frac{2,1 \cdot 10^{11} \cdot 561,76 \cdot 1,75}{\left(129,66 \cdot 10^{-3}\right)^{2} \cdot 78 \cdot 10^{-3} \cdot \sin 40^{\circ}} \left(\frac{2,55+1}{2,55}\right)} =$$

=
$$508,8 \cdot 10^6 \text{ }\Pi a = 508,8 \text{ }M\Pi a < \left[\sigma_{_H}\right] = 625 \text{ }M\Pi a.$$

Очевидно, что передача значительно недогружена, причем недогрузка составляет

$$\Delta_{\sigma_H} = \left\{ \left(\left[\sigma_H \right] - \sigma_H \right) / \left[\sigma_H \right] \right\} \cdot 100 \% = \left[\left(625 - 508, 8 \right) / 625 \right] \cdot 100 \% = 18,59 \%,$$

что превышает допустимую недогрузку и требует корректировки величины b_w в соответствии с формулой

$$b'_{w} = (\sigma_{H}/[\sigma_{H}])^{2} \cdot b_{w} = (508,8/625)^{2} \cdot 78 = 51,69 \text{ mm}.$$

Принимаем $b'_{w} = 52$ мм. Тогда откорректированная ширина зубчатых колес $b_{w} = 52$ мм, ширина колеса $b_{2} = 52$ мм и ширина шестерни $b_{1} = 56$ мм.

Определим величину рабочих контактных напряжений при откорректированной ширине зубчатых колес:

$$\sigma_{H} = 1,18 \cdot 0,74 \cdot \sqrt{\frac{2,1 \cdot 10^{11} \cdot 561,76 \cdot 1,63}{\left(129,66 \cdot 10^{-3}\right)^{2} \cdot 52 \cdot 10^{-3} \cdot \sin 40^{\circ}} \left(\frac{2,55+1}{2,55}\right)} =$$

$$=602,22\cdot10^6\ \Pi a=602,22\ M\Pi a<[\sigma_H]=625\ M\Pi a.$$

Недогрузка в этом случае составляет 3,64 %, что допустимо.

Выполняем проверочный расчёт передачи по критерию изгибной прочности, для чего предварительно определяем:

– эквивалентные числа зубьев зубчатых колес, используя формулу

$$z_{vi} = z_i / \cos^3 \beta$$
,

и в результате получаем для шестерни

$$z_{v1} = z_1/\cos^3 \beta = 42/\cos^3 13,65^\circ = 45,77$$

и для колеса

$$z_{y2} = z_2/\cos^3 \beta = 107/\cos^3 13,65^\circ = 116,6;$$

- коэффициент Y_{FS} формы зуба, зависящий от коэффициента смещения при зубонарезании (x=0) и числа зубьев z_v зубчатых колес, равный для шестерни

$$Y_{ES1} = 3,73,$$

а для колеса

$$Y_{ES2} = 3,72;$$

- отношения

$$\left[\sigma_F\right]_1 / Y_{FS1} = 390,86 / 3,73 = 104,79$$

И

$$\left[\sigma_F\right]_2 / Y_{FS2} = 246,86 / 3,72 = 66,36,$$

сопоставляя которые констатируем, что дальнейшие расчеты следует вести по колесу, для которого отношение имеет меньшее значение, и в них использовать коэффициент $Y_{FS} = Y_{FS2} = 3,72$ и допускаемые напряжения $\left[\sigma_F\right]_2 = 246,86$ МПа;

коэффициент повышения изгибной прочности вследствие наклона контактной линии к основанию зуба

$$Y_{\beta} = 1 - (\beta^{\circ}/100) = 1 - (13,65/100) = 0,863,$$

полученное значение которого удовлетворяет условию $Y_{\beta} \ge 0,7$;

коэффициент повышения прочности косозубых передач по напряжениям изгиба

$$Y_{FB} = Y_{B}/\varepsilon_{\alpha} = 0.863/1,72 = 0.502;$$

– уточненный коэффициент относительной ширины колеса

$$\psi_{bd} = 52/129, 66 = 0, 4;$$

коэффициент неравномерности распределения нагрузки между одновременно зацепляющимися парами зубьев при изгибе, при 8-й степени точности принимаемый

$$K_{F\alpha}=K_{H\alpha}=1,6;$$

- коэффициент $K_{F\beta}$ концентрации нагрузки, зависящий от твердости поверхности зубьев, расположения зубчатых колес относительно опор и уточненного коэффициента ψ_{bd} , в данном случае $K_{F\beta}=1,09$;
- -коэффициент $K_{{\scriptscriptstyle F}{\scriptscriptstyle V}}$ динамической нагрузки, зависящий от окружной скорости зубчатых колес, степени точности и твердости поверхности зубьев, $K_{{\scriptscriptstyle F}{\scriptscriptstyle V}}=1{,}02;$
 - коэффициент расчетной нагрузки

$$K_F = K_{F\alpha} \cdot K_{F\beta} \cdot K_{F\nu} = 1,6 \cdot 1,09 \cdot 1,02 = 1,78;$$

- окружную силу в зацеплении

$$F_t = 2 \cdot T_{\text{IV}} / d_1 = 2 \cdot 561,76/129,66 \cdot 10^{-3} = 8665,12 \text{ H}.$$

Теперь представляется возможным определить рабочие напряжения изгиба в передаче из условия прочности зубьев на изгиб

$$\sigma_F = Y_{FS} \cdot Y_{F\beta} \cdot K_F \cdot F_t / (b_w \cdot m_n) \leq [\sigma_F].$$

Подставив в расчетную формулу найденные значения величин, имеем

$$\sigma_{_F} = 3,72 \cdot 0,502 \cdot 1,78 \cdot 8665,12 / \left(52 \cdot 3\right) = 184,64 \text{ M}\Pi \text{a} \leq \left[\sigma_{_F}\right]_2 = 246,86 \text{ M}\Pi \text{a} \,.$$

Условие прочности соблюдается.

6 Практическая работа «Расчет на прочность конической зубчатой передачи»

6.1 Проектный расчёт конической прямозубой передачи

Расчет выполним для быстроходной передачи редуктора по рисунку 4.1 с использованием результатов, полученных в разделах 4.1 и 4.2 (разница в эквивалентных числах циклов перемены напряжений не оказывает влияния на величину коэффициентов долговечности и допускаемых напряжений).

Назначаем коэффициент K_{be} ширины зубчатого венца относительно внешнего конусного расстояния $K_{be} = 0.285$.

Вычисляем отношение

$$\frac{K_{be} \cdot u_E}{2 - K_{be}} = \frac{0,285 \cdot 4}{2 - 0,285} = 0,665.$$

Выбираем по графикам в зависимости от твердости поверхности зубьев, конструкции передачи и величины предыдущего отношения коэффициент $K_{H\beta}$ концентрации нагрузки $K_{H\beta}=1{,}07$.

Коэффициент θ_H , характеризующий понижение прочности зубьев конической передачи по сравнению с цилиндрической, принимаем $\theta_H=0.85$.

Приведенный модуль E_{np} упругости для стали $E_{np}=2,1\cdot 10^{11}$ Па. Тогда внешний делительный диаметр колеса найдем по формуле

$$d_{e2} = 2.9 \sqrt[3]{\frac{E_{np} \cdot T_{\text{III}} \cdot u_{\scriptscriptstyle E} \cdot K_{\scriptscriptstyle H\beta}}{\theta_{\scriptscriptstyle H} \cdot \left[\sigma_{\scriptscriptstyle H}\right]^2}} = \sqrt[3]{\frac{2.1 \cdot 10^{11} \cdot 183.55 \cdot 4 \cdot 1.07}{0.85 \cdot (625 \cdot 10^6)^2}} = 0.23 \text{ m} = 230 \text{ mm}.$$

Определяем внешнее конусное расстояни R_e передачи:

$$R_e = 0.5 \cdot d_{e2} \cdot \sqrt{u_E^2 + 1} / u_E = 0.5 \cdot 230 \cdot \sqrt{4^2 + 1} / 4 = 118,54 \text{ mm}.$$

Определяем ширину b зубчатых колес:

$$b = K_{be} \cdot R_{e} = 0,285 \cdot 118,54 = 33,78 \text{ MM}.$$

Принимаем b = 34 мм.

Найдем углы делительных конусов:

- колеса:

$$\delta_2 = \arctan(u_E) = \arctan 4 = 75,964^\circ;$$

- шестерни:

$$\delta_1 = 90^{\circ} - \delta_2 = 90^{\circ} - 75,964^{\circ} = 14,036^{\circ}.$$

Определим внешний делительный диаметр шестерни:

$$d_{e1} = d_{e2}/u_E = 230/4 = 57,5 \text{ MM}.$$

Найдем среднее конусное расстояние R_m по формуле

$$R_m = R_e - 0.5 \cdot b = 118.54 - 0.5 \cdot 34 = 101.54 \text{ MM}.$$

Определяем в зависимости от передаточного числа $u_{\mathcal{B}}$ передачи и внешнего делительного диаметра d_{el} шестерни ее предварительное число z'_1 зубьев: $z'_1 = 17$, а затем и фактическое:

$$z_1 = 1, 3 \cdot z_1' = 1, 3 \cdot 17 = 22, 1.$$

Принимаем $z_1 = 22$ и определяем число зубьев колеса:

$$z_2 = z_1 \cdot u_E = 22 \cdot 4 = 88.$$

Определяем торцовый (нормальный) модуль $m_{te}(m_{ne})$ зацепления во внешнем торцовом сечении:

$$m_{ne} = m_{te} = \frac{d_{e1}}{z_1} = \frac{57.5}{22} = 2,61 \text{ MM}.$$

Принимаем $m_{le}=2.5\,$ мм и определяем модуль зацепления в среднем торцовом сечении:

$$m_{tm} = m_{te} \cdot R_m / R_e = 2,5 \cdot 101,54/118,54 = 2,141 \text{ MM}.$$

Уточняя внешние делительные диаметры зубчатых колес $d_{\it e1}$ и $d_{\it e2}$, получаем:

- для шестерни $d_{e1} = m_{te} \cdot z_1 = 2,5 \cdot 22 = 55$ мм;
- для колеса $d_{e2} = m_{te} \cdot z_2 = 2,5 \cdot 88 = 220$ мм.

Определяя делительные диаметры шестерни и колеса в среднем торцовом сечении, получаем:

- для шестерни $d_{m1} = m_{tm} \cdot z_1 = 2,141 \cdot 22 = 47,102$ мм;
- для колеса $d_{m2} = m_{tm} \cdot z_2 = 2,141 \cdot 88 = 188,408$ мм.

6.2 Проверочный расчет конической прямозубой передачи по критерию контактной прочности

Для рассчитываемой передачи назначаем 8-ю степень точности: $n_{CT} = 8$. Рассчитываем окружную скорость v зубчатых колес передачи:

$$v = \pi \cdot d_{m1} \cdot n_{II} / 60 = \pi \cdot 47,102 \cdot 10^{-3} \cdot 720 / 60 = 1,78 \text{ m/c}.$$

Выбираем в зависимости от степени точности, твердости поверхности зубьев и окружной скорости коэффициент динамической нагрузки $K_{Hv}=1,23$ и определяем коэффициент K_H расчетной нагрузки:

$$K_H = K_{H\beta} \cdot K_{H\nu} = 1,07 \cdot 1,23 = 1,32.$$

Запишем условие контактной прочности передачи:

$$\sigma_{H} = 1.18 \sqrt{\frac{E_{np} \cdot T_{II} \cdot K_{H} \cdot \sqrt{u_{E}^{2} + 1}}{\theta_{H} \cdot d_{m1}^{2} \cdot b \cdot \sin 2\alpha \cdot u_{E}}} \leq \left[\sigma_{H}\right]$$

и определим рабочие контактные напряжения σ_H (определение E_{np} и α см. п. 5.2):

$$\sigma_{H} = 1,18\sqrt{\frac{E_{np} \cdot T_{II} \cdot K_{H} \cdot \sqrt{u_{E}^{2} + 1}}{\theta_{H} \cdot d_{m1}^{2} \cdot b \cdot \sin 2\alpha \cdot u_{E}}} = 1,18\sqrt{\frac{2,1 \cdot 10^{11} \cdot 48,81 \cdot 1,32 \cdot \sqrt{4^{2} + 1}}{0,85 \cdot \left(47,102 \cdot 10^{-3}\right)^{2} \cdot 34 \cdot 10^{-3} \cdot \sin 40^{\circ} \cdot 4}} = 1,18\sqrt{\frac{2,1 \cdot 10^{11} \cdot 48,81 \cdot 1,32 \cdot \sqrt{4^{2} + 1}}{0,85 \cdot \left(47,102 \cdot 10^{-3}\right)^{2} \cdot 34 \cdot 10^{-3} \cdot \sin 40^{\circ} \cdot 4}} = 1,18\sqrt{\frac{2,1 \cdot 10^{11} \cdot 48,81 \cdot 1,32 \cdot \sqrt{4^{2} + 1}}{0,85 \cdot \left(47,102 \cdot 10^{-3}\right)^{2} \cdot 34 \cdot 10^{-3} \cdot \sin 40^{\circ} \cdot 4}} = 1,18\sqrt{\frac{2,1 \cdot 10^{11} \cdot 48,81 \cdot 1,32 \cdot \sqrt{4^{2} + 1}}{0,85 \cdot \left(47,102 \cdot 10^{-3}\right)^{2} \cdot 34 \cdot 10^{-3} \cdot \sin 40^{\circ} \cdot 4}} = 1,18\sqrt{\frac{2,1 \cdot 10^{11} \cdot 48,81 \cdot 1,32 \cdot \sqrt{4^{2} + 1}}{0,85 \cdot \left(47,102 \cdot 10^{-3}\right)^{2} \cdot 34 \cdot 10^{-3} \cdot \sin 40^{\circ} \cdot 4}} = 1,18\sqrt{\frac{2,1 \cdot 10^{11} \cdot 48,81 \cdot 1,32 \cdot \sqrt{4^{2} + 1}}{0,85 \cdot \left(47,102 \cdot 10^{-3}\right)^{2} \cdot 34 \cdot 10^{-3} \cdot \sin 40^{\circ} \cdot 4}} = 1,18\sqrt{\frac{2,1 \cdot 10^{11} \cdot 48,81 \cdot 1,32 \cdot \sqrt{4^{2} + 1}}{0,85 \cdot \left(47,102 \cdot 10^{-3}\right)^{2} \cdot 34 \cdot 10^{-3} \cdot \sin 40^{\circ} \cdot 4}}$$

$$= 581, 7 \cdot 10^6 \text{ }\Pi \text{a} = 581, 7 \text{ }M\Pi \text{a} < [\sigma_H] = 625 \text{ }M\Pi \text{a}.$$

При этом недогрузка составляет

$$\Delta_{\sigma_H} = \left\{ \left(\left[\sigma_H \right] - \sigma_H \right) / \left[\sigma_H \right] \right\} \cdot 100 \% = \left\{ \left(625 - 581, 7 \right) / 625 \right\} \cdot 100 \% = 6,93 \%.$$

Так как недогрузка превышает допустимые 5 %, откорректируем ширину зубчатых колес по формуле

$$b' = (\sigma_H / [\sigma_H])^2 \cdot b = (581, 7/625)^2 \cdot 34 = 29,45 \text{ mm}.$$

Принимаем b' = 29 мм. Тогда откорректированная ширина зубчатых колес b = 29 мм, а рабочие контактные напряжения будут

$$\sigma_{H} = 1.18 \sqrt{\frac{2.1 \cdot 10^{11} \cdot 48.81 \cdot 1.32 \cdot \sqrt{4^{2} + 1}}{0.85 \cdot \left(47.102 \cdot 10^{-3}\right)^{2} \cdot 29 \cdot 10^{-3} \cdot \sin 40^{\circ} \cdot 4}} = 629.85 \text{ M}\Pi\text{a} > 625 \text{ M}\Pi\text{a}.$$

Результат следует признать удовлетворительным, т. к. перегрузка при этом составляет менее 1 %.

6.3 Проверочный расчет конической прямозубой передачи по критерию изгибной прочности

Определяем эквивалентные числа зубьев z_{vi} зубчатых колес по формуле

$$z_{v_i} = z_i / \cos \delta_i$$

и получаем для шестерни

$$z_{v1} = z_1 / \cos \delta_1 = 22 / \cos 14,036^{\circ} = 22,68$$

и для колеса

$$z_{v2} = z_2 / \cos \delta_2 = 88 / \cos 75,964^{\circ} = 362,84$$
.

Выбираем при коэффициенте смещения инструмента x=0 и при эквивалентном числе $z_{_{v}}$ зубьев коэффициенты формы зуба для шестерни $Y_{_{FS1}}=4,08$ и для колеса $Y_{_{FS2}}=3,77$.

Определяем отношения допускаемых напряжений изгиба к коэффициенту формы зуба и получаем:

- для шестерни $\left[\sigma_{F1}\right]/Y_{FS1} = 390,86/4,08 = 95,8;$
- для колеса $\left[\sigma_{F2}\right]/Y_{FS2}=246,86/3,77=65,48$,

следовательно, дальнейший расчет будем вести по колесу, для которого найденное отношение имеет меньшее значение.

Коэффициент θ_F , характеризующий понижение изгибной прочности зубьев конической передачи по сравнению с цилиндрической, будет $\theta_F = \theta_H = 0.85$.

Коэффициент $K_{{\scriptscriptstyle F}\beta}$ концентрации нагрузки определим по формуле

$$K_{F\beta} = 1 + (K_{H\beta} - 1) \cdot 1,25 = 1 + (1,07 - 1) \cdot 1,25 = 1,088$$

и выберем в зависимости от степени точности, твердости поверхности зубьев и окружной скорости коэффициент K_{Fv} динамической нагрузки $K_{Fv} = 1,26$. Тогда коэффициент расчетной нагрузки будет

$$K_F = K_{FB} \cdot K_{Fv} = 1,088 \cdot 1,26 = 1,37.$$

Определим окружную силу в зацеплении по формуле

$$F_t = 2 \cdot T_{\text{II}} / d_{m1} = 2 \cdot 48,81 \cdot 10^3 / 47,102 = 2072,52 \text{ H}.$$

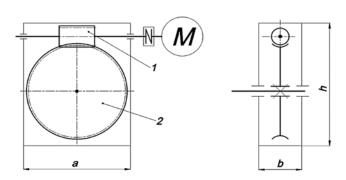
Запишем условие прочности передачи по изгибу:

$$\sigma_F = Y_{FS} \cdot F_t \cdot K_F / (\theta_F \cdot b \cdot m_{tm}) \leq [\sigma_F]$$

и определим рабочие напряжения изгиба по формуле

$$\sigma_F = Y_{FS} \cdot F_t \cdot K_F / (\theta_F \cdot b \cdot m_{tm}) = 3,77 \cdot 2072,52 \cdot 1,37 / (0,85 \cdot 29 \cdot 10^{-3} \cdot 2,141 \cdot 10^{-3}) =$$

$$= 202,83 \cdot 10^6 \text{ } \Pi \text{a} = 202,83 \text{ } \text{M} \Pi \text{a} < [\sigma_F] = 246,86 \text{ } \text{M} \Pi \text{a}.$$


Условие прочности передачи на изгиб соблюдается.

7 Практическая работа «Расчет на прочность червячной передачи»

7.1 Исходные данные

Схема передачи приведена на рисунке 7.1. Заданы:

- момент на тихоходном валу $T_2 = 180$ Нм;
- частота вращения ведущего вала $n_1 = 2850 \text{ мин}^{-1}$;
- частота вращения ведомого вала $n_2 = 50$ мин⁻¹;
- срок службы передачи $t_{\Sigma} = 42000$ ч.

a, b, h – габаритные размеры корпуса передачи; I – червяк, 2 – червячное колесо

Рисунок 7.1 – Схема закрытой червячной передачи

7.2 Материалы червяка, червячного колеса и допускаемые напряжения

Для изготовления червяка принимаем сталь 40X с поверхностной закалкой токами высокой частоты до твердости 50 HRC с последующим шлифованием и полированием витков.

Оценим ожидаемое значение скорости скольжения:

$$v_s = 4.5 \cdot 10^{-4} \cdot n_1 \cdot \sqrt[3]{T_2} = 4.5 \cdot 10^{-4} \cdot 2850 \cdot \sqrt[3]{180} = 7.24 \text{ m/c}.$$

Назначаем для венца червячного колеса материал I группы ($v_s > 5$ м/с): бронза Бр О10Ф1, отливка в кокиль, с механическими характеристиками $\sigma_e = 245$ МПа, $\sigma_T = 195$ МПа.

Принимая постоянный режим работы передачи, назначаем коэффициенты режима работы при расчетах по контактным напряжениям и напряжениям изгиба: $\mu_H = \mu_F = 1$.

Определяем эквивалентное число циклов нагружения:

$$N_{HE} = \mu_H \cdot 60 \cdot n_2 \cdot t_{\Sigma} = 1 \cdot 60 \cdot 50 \cdot 42000 = 12, 6 \cdot 10^7$$
 циклов.

Тогда коэффициент K_{HL} долговечности будет равен

$$K_{HL} = \sqrt[8]{10^7/N_{HE}} = \sqrt[8]{10^7/12, 6 \cdot 10^7} = 0,728.$$

Коэффициент C_{ν} , учитывающий скорость скольжения, $C_{\nu}=0.82$.

Допускаемое контактное напряжение при базовом числе циклов $[\sigma_H]_0$ для шлифованного и полированного червяка

$$[\sigma_H]_0 = (0.85...0.9)\sigma_g$$
.

Принимаем

$$[\sigma_H]_0 = 0.87\sigma_g = 0.87 \cdot 245 = 213.15 \text{ M}\Pi a$$

и определяем допускаемые контактные напряжения:

$$\left[\sigma_{_{\! H}}\right] = C_{_{\!v}} \cdot \left[\sigma_{_{\! H}}\right]_{\!0} \cdot K_{_{\! H\!L}} = 0,82 \cdot 213,15 \cdot 0,728 = 127,24 \ \mathrm{M}\Pi\mathrm{a}.$$

Допускаемое напряжение изгиба $\left[\sigma_{F}\right]_{0}$ при базовом числе циклов

$$\left[\sigma_F\right]_0 = 0.25\sigma_T + 0.08\sigma_g = 0.25 \cdot 195 + 0.08 \cdot 245 = 68.1 \text{ M}\Pi a.$$

Эквивалентное число циклов $N_{\it FE}$ при изгибе $N_{\it FE}\!=\!N_{\it HE}\!=\!12,6\cdot 10^7$. Тогда коэффициент долговечности

$$K_{FL} = \sqrt[9]{\frac{10^6}{N_k}} = \sqrt[9]{\frac{10^6}{12,6 \cdot 10^7}} = 0,584,$$

а допускаемое напряжение изгиба $\left[\sigma_{\scriptscriptstyle F}\right]$ будет

$$[\sigma_F] = [\sigma_F]_0 \cdot K_{FL} = 68, 1 \cdot 0,584 = 39,77 \text{ M}\Pi a.$$

7.3 Проектный расчет червячной передачи

Модуль упругости для стали $E_1 = 2,1\cdot 10^5$ МПа, модуль упругости для бронзы $E_2 = 0,9\cdot 10^5$ МПа. Тогда приведенный модуль упругости

$$E_{np} = 2E_1E_2/(E_1 + E_2) = 2 \cdot 2.1 \cdot 10^5 \cdot 0.9 \cdot 10^5/(2.1 \cdot 10^5 + 0.9 \cdot 10^5) = 1.26 \cdot 10^5 \text{ M}\Pi a.$$

Коэффициент диаметра червяка q назначаем, ориентируясь на среднее значение для модулей 2,5...5 мм, а именно q=12,5.

Так как число витков z_1 червяка и число зубьев z_2 червячного колеса неизвестны, передаточное отношение $i_{\it un}$ червячной передачи определим из отношения

$$i_{un} = \frac{z_2}{z_1} = \frac{n_1}{n_2} = \frac{2850}{50} = 57.$$

Принимаем число витков (заходов) червяка $z_1=1$. Тогда число зубьев z_2 червячного колеса определится как произведение $z_2=z_1\cdot i_{un}=1\cdot 57=57$.

Отношение

$$q/z_2 = 12,5/57 = 0,22$$

находится в рекомендуемых пределах ($q/z_2=0,22...0,4$). Тогда предварительное значение межосевого расстояния $a_w^{\ \prime}$ червячной передачи

$$a_{w}' = 0,625 \left(\frac{q}{z_{2}} + 1\right) \sqrt[3]{\frac{E_{np} \cdot T_{2}}{\left[\sigma_{H}\right]^{2} \cdot \left(q/z_{2}\right)}} = 0,625 \cdot \left(0,22 + 1\right) \sqrt[3]{\frac{1,26 \cdot 10^{11} \cdot 180}{\left(127,24 \cdot 10^{6}\right)^{2} \cdot 0,22}} = 0$$

$$= 0,14133 \text{ M} = 141,33 \text{ MM}.$$

Принимаем стандартное значение межосевого расстояния $a_w = 140$ мм. Определяем предварительное значение осевого модуля зацепления m':

$$m' = a_w / [0.5 \cdot (q + z_2)] = 140 / [0.5 \cdot (12.5 + 57)] = 4,029 \text{ MM}.$$

Принимаем стандартное значение модуля m зацепления m = 4 мм. Значение коэффициента смещения инструмента x, определяемое по формуле

$$x = (a_w/m) - 0.5 \cdot (q + z_2) = (140/4) - 0.5 \cdot (12.5 + 57) = 0.25,$$

находится в рекомендуемых пределах.

Определим диаметры червяка:

- делительный $d_1 = qm = 12, 5 \cdot 4 = 50$ мм;
- выступов $d_{a1} = d_1 + 2m = 50 + 2 \cdot 4 = 58$ мм;
- впадин $d_{f1} = d_1 2, 4m = 50 2, 4 \cdot 4 = 40, 4$ мм.

Найдем диаметры червячного колеса:

- делительный $d_2 = \overline{z_2}m = 57 \cdot 4 = 228 = 57 \cdot 4 = 228$ мм;
- выступов $d_{a2} = (z_2 + 2 + 2x)m = (57 + 2 + 2 \cdot 0,25)4 = 238$ мм;
- впадин $d_{f2} = (z_2 2, 4 + 2x)m = (57 2, 4 + 2 \cdot 0, 25)4 = 220, 4 \text{ мм};$
- максимальный $d_{ae2} = d_{a2} + \lceil 6m/(z_1 + K) \rceil = 238 + \lceil 6 \cdot 4/(1+2) \rceil = 246$ мм,

где K зависит от вида червяка, для червяка $Z\!A$ (архимедов) K=1.

Длина нарезанной части b_1 червяка

$$b_1 = 2 \left\lceil \sqrt{\left(\frac{d_{ae2}}{2}\right)^2 - \left(a_w - \frac{d_{a1}}{2}\right)^2} + \frac{\pi m}{2} \right\rceil = 2 \left\lceil \sqrt{\left(\frac{246}{2}\right)^2 - \left(140 - \frac{58}{2}\right)^2} + \frac{\pi \cdot 4}{2} \right\rceil = 47,6 \text{ MM}.$$

Принимаем $b_1 = 50$ мм.

Так как $z_1 = 1$, ширину червячного колеса определим по формуле

$$b_2 \le 0.75 d_{a1} = 0.75 \cdot 58 = 43.5 \text{ mm}.$$

Принимаем $b_2 = 40$ мм.

Угол подъема винтовой линии червяка γ определяется из формулы $tg\gamma = z_1/q$, откуда

$$\gamma = \text{arctg}(1/12,5) = 4,5739^{\circ} = 4^{\circ}34'26''.$$

Определим окружную скорость V_1 червяка:

$$V_1 = \pi \cdot d_1 \cdot n_1 / (60 \cdot 1000) = \pi \cdot 50 \cdot 2850 / (60 \cdot 1000) = 7,46 \text{ m/c},$$

что позволяет определить фактическую скорость скольжения V_s :

$$V_s = V_1/\cos \gamma = 7,46/\cos 4,5739^\circ = 7,48 \text{ m/c}.$$

В результате анализа соответствия фактической скорости скольжения и выбранного материала венца червячного колеса предварительно полученным

оставляем бронзу как достаточно прочную и обеспечивающую небольшие габариты передачи.

Определим КПД передачи:

$$\eta = tg\gamma/tg(\gamma + \phi) = tg4,5739^{\circ}/tg(4,5739^{\circ} + 1,25^{\circ}) = 0,784,$$

где ϕ – угол трения, зависящий от скорости скольжения, ϕ = 1,25°.

7.4 Проверочный расчет червячной передачи по критерию контактной прочности

Коэффициент нагрузки определяем по формуле

$$K_H = K_F = K_{\beta} \cdot K_{\nu} = 1, 1 \cdot 1, 1 = 1, 21,$$

где K_{β} – коэффициент концентрации нагрузки, K_{β} = 1,1;

 K_{v} – коэффициент динамической нагрузки, K_{v} = 1,1.

Зададимся следующими геометрическими параметрами передачи:

- угол δ обхвата червяка колесом $\delta = 50^{\circ} = 0.8727$ рад;
- угол α профиля червяка $\alpha = 20^{\circ}$.

Коэффициент ε_{α} торцового перекрытия рассчитываем по формуле

$$\varepsilon_{\alpha} = \left(\sqrt{0.03 \cdot z_{2}^{2} + z_{2} + 1} - 0.17 \cdot z_{2} + 2.9\right) / 2.95 =$$

$$= \left(\sqrt{0,03 \cdot 57^2 + 57 + 1} - 0,17 \cdot 57 + 2,9\right) / 2,95 = 1,93.$$

Коэффициент ξ уменьшения длины контактных линий $\xi = 0.75$.

Условие прочности передачи по контактным напряжениям описывается формулой

$$\sigma_{H} = 1.18 \sqrt{\frac{E_{np} \cdot T_{2} \cdot K_{H} \cdot \cos^{2} \gamma}{d_{2}^{2} \cdot d_{1} \cdot \delta \cdot \varepsilon_{\alpha} \cdot \xi \cdot \sin 2\alpha}} \leq [\sigma_{H}].$$

Тогда рабочие контактные напряжения определим по формуле

$$\sigma_H = 1.18 \sqrt{\frac{E_{np} \cdot T_2 \cdot K_H \cdot \cos^2 \gamma}{d_2^2 \cdot d_1 \cdot \delta \cdot \varepsilon_\alpha \cdot \xi \cdot \sin 2\alpha}} =$$

$$=1{,}18\sqrt{\frac{1{,}26\cdot10^5\cdot180\cdot10^3\cdot1{,}1\cdot0{,}9936}{228^2\cdot50\cdot0{,}8727\cdot1{,}93\cdot0{,}75\cdot0{,}766}}=117{,}14\text{ M}\Pi a.$$

Условие прочности выполняется: $\sigma_H = 117,14 \text{ M}\Pi \text{a} < [\sigma_H] = 127,24 \text{ M}\Pi \text{a}$. Процент недогрузки по контактным напряжениям

$$\Delta_{\sigma_H} = \left\{ \left(\left[\sigma_H \right] - \sigma_H \right) / \left[\sigma_H \right] \right\} \cdot 100 \% = \left[\left(127, 24 - 117, 14 \right) / 127, 24 \right] \cdot 100 \% = 7,94 \%.$$

Полученный результат принимаем к сведению, потому что недогрузка в червячных передачах не компенсируется.

7.5 Проверочный расчет червячной передачи по критерию изгибной прочности

Определяем момент на червяке:

$$T_1 = T_2/(i_{un} \cdot \eta) = 180/(57 \cdot 0.784) = 4.03 \text{ H} \cdot \text{M}.$$

Определяем силы в зацеплении:

— окружную силу F_{t1} на червяке (осевую силу F_{a2} на червячном колесе):

$$F_{t1} = F_{a2} = 2T_1/d_1 = 2 \cdot 4,03 \cdot 10^3/50 = 161,2 \text{ H};$$

— окружную силу F_{t2} на червячном колесе (осевую силу F_{a1} на червяке):

$$F_{t2} = F_{a1} = 2T_2/d_2 = 2.180 \cdot 10^3/228 = 1578.9 \text{ H};$$

– радиальную силу:

$$F_{r1} = F_{r2} = F_r = F_{t2} \cdot \text{tg}\alpha = 1578, 9 \cdot \text{tg}20^\circ = 574, 7 \text{ H}.$$

Назначаем 7-ю степень точности передачи.

Нормальный модуль зацепления m_n определим по формуле

$$m_n = m \cdot \cos \gamma = 4 \cdot \cos 4,5739 = 3,987 \text{ mm}.$$

Определим эквивалентное число z_{v} зубьев червячного колеса:

$$z_y = z_2 / \cos^3 \gamma = 57 / \cos^3 4,5739 = 57,55$$

и соответствующий ему коэффициент формы зуба: $Y_F = 1,435$. Запишем условие прочности передачи на изгиб

$$\sigma_F = 0.7Y_F \left[F_{t2} \cdot K_F / (b_2 \cdot m_n) \right] \le \left[\sigma_F \right]$$

и определим рабочие напряжения изгиба:

$$\sigma_F = 0.7Y_F \left[F_{t2} \cdot K_F / (b_2 \cdot m_n) \right] = 0.7 \cdot 1.435 \left[1578.9 \cdot 1.21 / (40 \cdot 3.987) \right] = 12.03 \text{ M}\Pi \text{a.}$$

Условие прочности выполняется:

$$\sigma_F = 12,03 \text{ M}\Pi \text{a} < [\sigma_F] = 39,77 \text{ M}\Pi \text{a}.$$

7.6 Тепловой расчет передачи

Определим мощность на валу червяка:

$$P_1 = T_1 \cdot (\pi \cdot n_1/30) = 4,03 \cdot (\pi \cdot 2850/30) = 1202,76 \text{ Bt.}$$

Количество выделяющейся в секунду теплоты (тепловая мощность) W определим по формуле

$$W = P_1 \cdot (1 - \eta) = 1202,76 \cdot (1 - 0,784) = 259,8 \text{ BT} = 0,26 \text{ kBt}.$$

Допустимую температуру t_1 масла принимаем $t_1 = 70$ °C. Коэффициент теплоотдачи K в данном случае K = 17 Вт/(м²·°С). Площадь поверхности охлаждения A – это площадь поверхности прямоугольной призмы с размерами $a \cdot b \cdot h = 300 \cdot 100 \cdot 350$ мм без учета площади основания, A = 0.315 м².

Количество теплоты, отданной через стенки корпуса,

$$W_1 = K \cdot (t_1 - t_0) \cdot A = 17 \cdot (70 - 20) \cdot 0.315 = 267.75 \text{ BT} = 0.27 \text{ kBT},$$

где t_0 – температура окружающей среды, t_0 = 20 °C.

В результате проверки условия $W_1 > W$ констатируем, что $W_1 = 0,27$ кВт $\approx W = 0,26$ кВт и для гарантированного отсутствия перегрева следует предусмотреть оребрение корпуса.

Количество масла в редукторе на 1 кВт мощности v' = 0,7 л / кВт.

Тогда количество масла в масляной ванне $v=v'\cdot P_1=0,7\cdot 1,2=0,84$ л ≈ 1 л, а высота масляной ванны $h_{_{\rm M}}=v/a$ $\cdot b=1000/30\cdot 10=3,3$ см =33 мм .

7.7 Проверка червяка на жесткость

Расчетная схема червяка приведена на рисунке 7.2.

Силы, приложенные к червяку:

- окружная $F_{t1} = 161,2$ H;
- радиальная $F_{r1} = 574,7$ H;
- в муфте $F_M = 125\sqrt{T_1} = 125\sqrt{4,03} = 250,9$ H;
- осевая не учитывается при расчете.

Определим осевой момент инерции сечения тела червяка:

$$J = \frac{\pi \cdot d_{f1}^4}{64} = \frac{\pi \cdot 40, 4^4}{64} =$$

$$= 13,08 \cdot 10^4 \text{ mm}^4 = 13,08 \cdot 10^{-8} \text{ m}^4.$$

Прогиб в вертикальной плоскости (от силы F_{r1})

$$y_{\scriptscriptstyle \theta} = y_{\scriptscriptstyle H} = \frac{F_{r1} \cdot a^2 \cdot b^2}{3 \cdot E \cdot J \cdot l} =$$

$$=\frac{574,7\cdot \left(125\cdot 10^{-3}\right)^2\cdot \left(115\cdot 10^{-3}\right)^2}{3\cdot 2,1\cdot 10^{11}\cdot 13,08\cdot 10^{-8}\cdot 240\cdot 10^{-3}}=$$

$$= 0,006 \cdot 10^{-3} \text{ m} = 0,006 \text{ mm}.$$

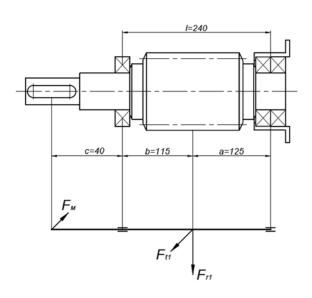


Рисунок 7.2 – Расчетная схема червяка

Прогиб в горизонтальной плоскости (от сил F_{t1} и F_{t2})

$$y_{z} = y_{H} + y_{D} = \frac{F_{t} \cdot a^{2} \cdot b^{2}}{3 \cdot E \cdot J \cdot l} + \frac{F_{M} \cdot c \cdot a \cdot (c^{2} - a^{2})}{6 \cdot E \cdot J \cdot l} =$$

$$= \frac{161.9 \cdot (125 \cdot 10^{-3})^{2} \cdot (115 \cdot 10^{-3})^{2}}{3 \cdot 2.1 \cdot 10^{11} \cdot 13.08 \cdot 10^{-8} \cdot 240 \cdot 10^{-3}} +$$

$$+\frac{250.9\cdot 40\cdot 10^{-3}\cdot 125\cdot 10^{-3}\cdot \left[\left(240\cdot 10^{-3}\right)^2-\left(125\cdot 10^{-3}\right)^2\right]}{6\cdot 2.1\cdot 10^5\cdot 13.08\cdot 10^{-8}\cdot 240\cdot 10^{-3}}=$$

$$= 0.0013 \cdot 10^{-3} + 0.0012 \cdot 10^{-3} = 0.0025 \cdot 10^{-3} \text{ m} = 0.0025 \text{ mm}.$$

Допускаемый прогиб червяка $[y] = 0,005 m = 0,005 \cdot 4 = 0,02$ мм. Суммарный прогиб червяка

$$y = \sqrt{y_g^2 + y_z^2} = \sqrt{0,006^2 + 0,0025^2} = 0,0065$$
mm $< [y] = 0,02$ mm.

Жесткость червяка обеспечена.

8 Практическая работа «Проектный и проверочный расчет вала. Подбор и расчет подшипников качения»

8.1 Проектный расчет вала

Исходными данными к проектному расчету вала являются некоторые результаты расчета тихоходной ступени редуктора по рисунку 1.1: делительный диаметр колеса $d_2 = 330,33$ мм; угол β наклона зубьев тихоходного колеса $\beta = 13,65^{\circ}$.

Для вала назначаем материал — сталь 45, термообработка — улучшение, обеспечивающая $\sigma_B = 600 \text{ M}\Pi \text{a}$, $\sigma_T = 355 \text{ M}\Pi \text{a}$.

Определяем силы в зацеплении:

– окружная сила на колесе принимается равной окружной силе на шестерне, определенной при расчете тихоходной передачи:

$$F_t = 8665,12 \text{ H};$$

радиальная сила

$$F_r = \frac{F_t \cdot \text{tg}\alpha}{\cos\beta} = \frac{8665,12 \cdot 0,364}{0,972} = 3244,9 \text{ H};$$

- осевая сила

$$F_a = F_t \cdot \text{tg } \beta = 8665, 12 \cdot 0, 243 = 2105, 62 \text{ H}.$$

Определим:

– изгибающий момент от осевой силы F_a :

$$M_a = F_a \cdot d_2/2 = 2105,62 \cdot 330,33 \cdot 10^{-3}/2 = 347,77 \text{ H} \cdot \text{m};$$

- силы $F_{\mathcal{B}}$ на выходных концах вала, передаваемые ему через барабаны:

$$F_{\rm B} = F_{tPO} = 5.5 \text{ kH} = 5500 \text{ H}.$$

Разрабатываем конструкцию вала в соответствии с заданной кинематической схемой редуктора, для чего оцениваем диаметр вала из расчета на кручение при пониженных допускаемых напряжениях $[\tau] = 15$ МПа в месте посадки зубчатого колеса по формуле

$$d_K = \sqrt[3]{T_V/(0.2 \cdot [\tau])} = \sqrt[3]{1375/(0.2 \cdot 15 \cdot 10^6)} = 0.077 \text{ m} = 77 \text{ mm}.$$

Принимаем $d_{K} = 80$ мм и определяем:

— диаметр d_{Π} вала в месте посадки подшипников $d_{\Pi}=d_{K}-8=80-8=$ = 72 мм, принимаем $d_{\Pi}=70$ мм;

- диаметр $d_{{\scriptscriptstyle BK}}$ выходного конца вала $d_{{\scriptscriptstyle BK}}=d_{{\scriptscriptstyle \Pi}}-8=70-8=62$ мм;
- диаметр $d_{\mathcal{B}}$ упорного буртика $d_{\mathcal{B}} = d_{\mathcal{K}} + 10 = 80 + 10 = 90$ мм;
- диаметр d_M шейки под манжету $d_M = 65$ мм,

соблюдая при этом условие $d_{BK} < d_M \le d_{\Pi}$.

Расстояния между опорами и точками приложения нагрузок определяются из эскизной компоновки редуктора, выполняемой после расчета передач и оценки диаметров валов. Из компоновки имеем a=135 мм =0,135 м, b=160 мм =0,16 м, c=60 мм =0,06 м, d=135 мм =0,135 м.

8.2 Определение реакций опор и построение эпюр изгибающих и вращающих моментов

Построим компоновку вала и схему действующих на вал внешних сил (рисунок 8.1, a, δ), а затем рассмотрим силы, расположенные в вертикальной и горизонтальной плоскостях, отдельно.

B вертикальной плоскости (рисунок 8.1, в) действуют активные радиальная сила F_r в зацеплении и момент M_a от осевой силы F_a , а также реакции R_A^s и R_B^s .

Составим уравнение суммы моментов относительно опоры A:

$$\sum M_A^e = F_r \cdot b - M_a - R_B^e \cdot (b+c) = 0,$$

откуда реакция в опоре B

$$R_B^e = (F_r \cdot b - M_a)/(b+c) = (3244,9 \cdot 0,16 - 347,77)/(0,16+0,06) = 779,15 \text{ H}.$$

Составим уравнение суммы моментов относительно опоры B:

$$\Sigma M_B^e = R_A^e \cdot (b+c) - M_a - F_r \cdot c = 0,$$

откуда найдем реакцию в опоре A:

$$R_A^e = (F_r \cdot c + M_a)/(b+c) = (3244,9 \cdot 0,06 + 347,77)/(0,16+0,06) = 2465,73 \text{ H}.$$

Для проверки правильности вычислений составим уравнение суммы проекций всех сил на вертикальную ось:

$$\Sigma F^{e} = R_{A}^{e} - F_{r} + R_{B}^{e} = 2465,73 - 3244,9 + 779,15 = 0.$$

Определяем величину изгибающих моментов в вертикальной плоскости:

- момент в сечении II (с левой стороны) $M_{\text{II}(x)}^{e} = R_{A}^{e} \cdot b = 2465, 73 \cdot 0, 16 = 394, 52 \text{ H·м};$
- момент в сечении II (с правой стороны) $M_{\Pi(n)}^{\epsilon} = R_{B}^{\epsilon} \cdot c = 779,15 \cdot 0,06 = 46,75 \, \mathrm{H \cdot M}$ и строим эпюру моментов в вертикальной плоскости (см. рисунок $8.1, \epsilon$).

В горизонтальной плоскости действуют активные силы $F_{\mathcal{B}}$ на барабанах и окружная сила F_t , а также реакции $R_{\mathcal{A}}^{\mathfrak{c}}$ и $R_{\mathcal{B}}^{\mathfrak{c}}$ (рисунок 8.1, \mathfrak{c}). Составим уравнение

суммы моментов всех сил относительно опоры A:

$$\Sigma M_A^{c} = F_{E} \cdot a + F_{t} \cdot b + R_{E}^{c} \cdot (b+c) - F_{E} \cdot (b+c+d) = 0,$$

из которого определим величину реакции $R_B^{\mathfrak{e}}$:

$$R_B^{c} = \left[-F_E \cdot a - F_t \cdot b + F_E \cdot (b + c + d) \right] / (b + c) =$$

 $= \left[-5500 \cdot 0,135 - 8665,12 \cdot 0,16 + 5500 \cdot \left(0,16 + 0,06 + 0,135 \right) \right] \middle/ 0,22 = -801,91 \, \mathrm{H}.$

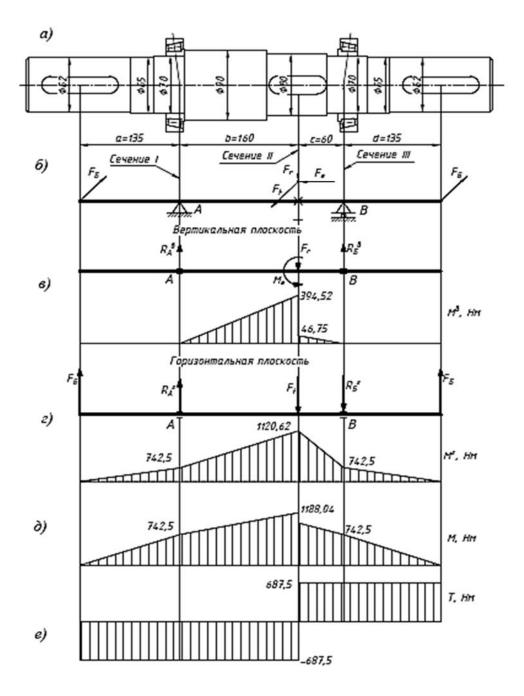


Рисунок 8.1 – Компоновка вала, расчетные схемы, эпюры изгибающих и крутящего моментов

Уравнение суммы моментов относительно опоры B имеет вид:

$$\Sigma M_B^2 = F_E \cdot (a+b+c) - F_t \cdot c + R_A^2 \cdot (b+c) - F_E \cdot d = 0,$$

позволяющий определить величину реакции R_A^2 :

$$R_A^c = \left[F_B \cdot (a+b+c) - F_t \cdot c + F_B \cdot d \right] / (b+c) =$$

$$= \left[-5500 \cdot (0,135+0,16+0,06) + 8665,12 \cdot 0,06 + 5500 \cdot 0,135 \right] / 0,22 = -3136,77 \text{ H}.$$

Выполним проверку, спроектировав все силы на вертикальную ось:

$$\Sigma F^{z} = F_{\scriptscriptstyle E} + R_{\scriptscriptstyle A}^{z} - F_{\scriptscriptstyle t} - R_{\scriptscriptstyle E}^{z} + F_{\scriptscriptstyle E} =$$

$$=5500 + (-3136,77) - 8665,12 - (-801,91) + 5500 = 0.$$

Для построения эпюры изгибающих моментов в горизонтальной плоскости определяем:

момент в сечении I

$$M_{\rm I}^{z} = F_{\rm E} \cdot a = 5500 \cdot 0.135 = 742.5 \,\mathrm{H} \cdot \mathrm{m};$$

- момент в сечении II (с левой стороны)

$$M_{\Pi(a)}^{\epsilon} = F_{E} \cdot (a+b) + R_{A}^{\epsilon} \cdot b = 5500 \cdot (0,135+0,16) + (-3136,77) \cdot 0,16 = 1120,62 \text{ H} \cdot \text{M};$$

- момент в сечении II (с правой стороны)

$$M_{\Pi(n)}^{\,\varepsilon} = F_{\scriptscriptstyle E} \cdot (d+c) - R_{\scriptscriptstyle B}^{\,\varepsilon} \cdot c = 5500 \cdot 0,195 - (-801,91) \cdot 0,06 = 1120,61 \text{ H} \cdot \text{m};$$

– момент в сечении III

$$M_{\text{III}}^{\varepsilon} = F_{E} \cdot 0.135 = 5500 \cdot 0.135 = 742.5 \text{ H} \cdot \text{M}$$

и строим эпюру изгибающих моментов в горизонтальной плоскости (см. рисунок 8.1, ε).

Строим эпюру суммарных изгибающих моментов (рисунок 8.1, θ), для чего определяем их значения:

– в сечении I

$$M_{\rm I} = M_{\rm I}^{z} = 742,5 \; {\rm H} \cdot {\rm m};$$

- в сечении III

$$M_{\text{III}} = M_{\text{III}}^{z} = 742,5 \text{ H} \cdot \text{m};$$

– в сечении II (слева)

$$M_{\mathrm{II}(\pi)} = \sqrt{\left(M_{\mathrm{II}(\pi)}^{s}\right)^{2} + \left(M_{\mathrm{II}}^{s}\right)^{2}} = \sqrt{394,52^{2} + 1120,62^{2}} = 1188,04\,\mathrm{H}\cdot\mathrm{m};$$

- в сечении II (справа)

$$M_{\mathrm{II}(n)} = \sqrt{\left(M_{\mathrm{II}(n)}^{e}\right)^{2} + \left(M_{\mathrm{II}}^{e}\right)^{2}} = \sqrt{46,75^{2} + 1120,62^{2}} = 1121,59 \ \mathrm{H\cdot m}.$$

Крутящий момент (по номиналу) на каждом барабане

$$T_{PO} = F_{tPO} \cdot D_{PO} / 2 = 5500 \cdot 250 \cdot 10^{-3} / 2 = 687.5 \text{ H} \cdot \text{M},$$

а эпюра крутящих моментов имеет вид, приведенный на рисунке 8,1, е.

Опасным сечением является сечение II с диаметром $d_k = 80$ мм, в котором действуют наибольшие изгибающий и крутящий моменты, концентратором напряжений является шпоночный паз.

Найдем пределы усталостной выносливости $\sigma_{_{-1}}$ по напряжениям изгиба и напряжениям кручения $\tau_{_{-1}}$:

$$\sigma_{-1} = 0.4 \cdot \sigma_{R} = 0.4 \cdot 600 = 240 \,\mathrm{MHa};$$

$$\tau_{-1} = 0, 2 \cdot \sigma_{R} = 0, 2 \cdot 600 = 120 \,\mathrm{MHa}.$$

Выбираем размеры шпоночного паза по диаметру шейки под зубчатое колесо $d_K = 80$ мм:

- ширина шпонки b = 22 мм;
- высота шпонки h = 14 мм;
- глубина паза вала $t_1 = 9$ мм.

Определяем осевой момент сопротивления опасного сечения:

$$W = (\pi \cdot d_K^3/32) - (b \cdot t_1 \cdot (d_K - t_1)^2/2 \cdot d_K) =$$

$$= \left\lceil \pi \cdot \left(80 \cdot 10^{-3}\right)^3 \middle/ 32 \right\rceil - \left\{ \left(22 \cdot 9\right) 10^{-6} \cdot \left[\left(80 - 9\right) \cdot 10^{-3} \right]^2 \middle/ 2 \cdot 80 \cdot 10^{-3} \right\} = 44,06 \cdot 10^{-6} \text{ m}^3.$$

Определяем полярный момент сопротивления опасного сечения:

$$W_p = (\pi \cdot d_K^3 / 16) - (b \cdot t_1 \cdot (d_K - t_1)^2 / 2 \cdot d_K) =$$

$$= \left[\pi \cdot \left(80 \cdot 10^{-3}\right)^3 \middle/ 16\right] - \left\{\left(22 \cdot 9\right)10^{-6} \cdot \left[\left(80 - 9\right) \cdot 10^{-3}\right]^2 \middle/ 2 \cdot 80 \cdot 10^{-3}\right\} = 94,26 \cdot 10^{-6} \text{ m}^3.$$

В опасном сечении найдем максимальные напряжения изгиба σ_{u} :

$$\sigma_u = \frac{M_{\Pi(\pi)}}{W} \cdot 10^{-6} = \frac{1188,04}{44,06 \cdot 10^{-6}} \cdot 10^{-6} = 26,96 \text{ M}\Pi a$$

и кручения $\tau_{\kappa p}$:

$$\tau_{\kappa p} = \frac{T}{W_P} \cdot 10^{-6} = \frac{1375}{94,26 \cdot 10^{-6}} \cdot 10^{-6} = 14,59 \text{ M}\Pi a.$$

Определяем параметры циклов нагружения вала и результаты сводим в таблицу 8.1.

Таблица 8.1 – Параметры циклов

Параметры циклов	Вид цикла нагружения	
	Изгиб	Кручение
Амплитуда цикла, МПа	$\sigma_a = \sigma_u = 26,96$	$\tau_a = 0, 5 \cdot \tau_{\kappa p} =$
		$=0,5\cdot 14,59=7,295$
Среднее напряжение цикла, МПа	$\sigma_m = 0$	$\tau_m = 0, 5 \cdot \tau_{\kappa p} = 7,295$
Коэффициент, корректирующий влияние	$\psi_{\sigma} = 0.02 + 2 \cdot 10^{-4} \cdot \sigma_{\theta} =$	$\psi_{\tau} = 0, 5 \cdot \psi_{\sigma} =$
среднего напряжения цикла на сопротивление усталости	$=0,02+2\cdot10^{-4}\cdot600=$	$= 0, 5 \cdot 0, 14 = 0, 07$
	= 0,14	

Определяем коэффициенты концентрации напряжений для выбранного концентратора (шпоночный паз выполнен концевой фрезой) при пределе прочности материала $\sigma_{\scriptscriptstyle B}=600~{\rm M}\Pi a$:

$$K_{\sigma} = 1.9; \quad K_{\tau} = 1.55.$$

Определяем коэффициенты, учитывающие размеры вала при расчетах на усталость, сначала по изгибу:

$$K_{d\sigma} = 0.5 \cdot \left[1 + \left(\frac{d}{7.5} \right)^{-2 \cdot v_{\sigma}} \right] = 0.5 \cdot \left[1 + \left(\frac{80}{7.5} \right)^{-2 \cdot 0.115} \right] = 0.79,$$

где v_{σ} – показатель степени, $v_{\sigma} = 0.19 - 1.25 \cdot 10^{-4} \cdot \sigma_{\theta} = 0.19 - 1.25 \cdot 10^{-4} \cdot 600 = 0.115$, а затем по кручению:

$$K_{d\tau} = 0.5 \cdot \left[1 + \left(\frac{d}{7.5}\right)^{-2 \cdot v_{\tau}}\right] = 0.5 \cdot \left[1 + \left(\frac{80}{7.5}\right)^{-2 \cdot 0.1725}\right] = 0.72,$$

где v_{τ} — показатель степени, v_{τ} = 1,5 · v_{σ} = 1,5 · 0,115 = 0,1725 .

Определяем коэффициенты, учитывающие качество поверхности при шероховатости поверхности вала в опасном сечении $R_{\rm z}=0.63$ мкм:

$$K_{F\sigma} = 1 - 0.22 \left[\lg \left(\frac{\sigma_s}{20} \right) - 1 \right] \cdot \lg R_z = 1 - 0.22 \left[\lg \left(\frac{600}{20} \right) - 1 \right] \cdot \lg 0.63 = 1.021,$$

$$K_{F\tau} = 0.575 \cdot K_{F\sigma} + 0.425 = 0.575 \cdot 1.021 + 0.425 = 1.012.$$

Коэффициент K_{ν} , учитывающий наличие поверхностного упрочнения, $K_{\nu}=1$, т. к. поверхностное упрочнение вала отсутствует.

Рассчитываем коэффициенты концентрации напряжений: при изгибе

$$K_{\sigma D} = \frac{\left[\frac{K_{\sigma}}{K_{d\sigma}} + \frac{1}{K_{F\sigma}} - 1\right]}{K_{V}} = \frac{\left[\frac{1,9}{0,79} + \frac{1}{1,021} - 1\right]}{1} = 2,384$$

и при кручении

$$K_{\tau D} = \frac{\left[\frac{K_{\tau}}{K_{d\tau}} + \frac{1}{K_{F\tau}} - 1\right]}{1} = \frac{\left[\frac{1,55}{0,72} + \frac{1}{1,012} - 1\right]}{1} = 2,141.$$

Коэффициенты запаса сопротивления усталости при изгибе S_{σ} и кручении S_{τ} определяют по формулам

$$S_{\sigma} = \frac{\sigma_{-1}}{K_{\sigma D} \cdot \sigma_{a} + \psi_{\sigma} \sigma_{m}} = \frac{120}{2,384 \cdot 26,96 + 0,14 \cdot 0} = 3,73;$$

$$S_{\tau} = \frac{\tau_{-1}}{K_{\tau D} \cdot \tau_a + \psi_{\tau} \tau_m} = \frac{120}{2,141 \cdot 7,295 + 0,07 \cdot 7,295} = 7,44.$$

Суммарный коэффициент запаса сопротивления усталости

$$S = \frac{S_{\sigma} \cdot S_{\tau}}{\sqrt{S_{\sigma}^2 + S_{\tau}^2}} = \frac{3,73 \cdot 7,44}{\sqrt{3,73^2 + 7,44^2}} = 3,33 \ge 1,5.$$

Условие усталостной прочности соблюдается.

8.3 Выбор и проверочный расчет подшипников тихоходного вала

По диаметру шеек тихоходного вала под подшипники и при наличии значительной осевой нагрузки назначаем для него подшипники качения радиально-упорные роликовые конические 7214 с параметрами:

- внутренний диаметр d = 70 мм;
- наружный диаметр D = 125 мм;
- ширина T = 26,25 мм;

- угол контакта $\alpha = 15^{\circ}38'32'' = 15,6422^{\circ};$
- статическая грузоподъемность $C_0 = 89$ кH;
- динамическая грузоподъемность C = 119 кH.

Определяем суммарную нагрузку на подшипник в опоре A:

$$R_A = \sqrt{\left(R_A^6\right)^2 + \left(R_A^2\right)^2} = \sqrt{2465,75^2 + 3136,77^2} = 3989,89 \text{ H},$$

а затем в опоре B:

$$R_B = \sqrt{\left(R_B^6\right)^2 + \left(R_B^2\right)^2} = \sqrt{779,15^2 + 801,91^2} = 1118,1 \text{ H}.$$

Найдем параметр осевого нагружения подшипника:

$$e = 1.5 \cdot \text{tg} \,\alpha = 1.5 \cdot \text{tg} \,15.6422^{\circ} = 0.42.$$

Определяем внутреннее осевое усилие $S_{\scriptscriptstyle A}$ в левом подшипнике при α < 18°:

$$S_4 = 0.83 e \cdot R_4 = 0.83 \cdot 0.42 \cdot 3989.89 = 1390.88 H,$$

а затем внутреннее осевое усилие $S_{\scriptscriptstyle B}$ в правом подшипнике:

$$S_B = 0.83 e \cdot R_B = 0.83 \cdot 0.42 \cdot 1118, 1 = 389,77 \text{ H}.$$

Определяем осевые нагрузки на подшипники для расчетного случая, когда $S_{\scriptscriptstyle A} \geq S_{\scriptscriptstyle B}$ и $F_{\scriptscriptstyle a} \geq 0$:

$$F_{aA} = S_A = 1390,88 \text{ H};$$

$$F_{aB} = F_{aA} + F_a = 1390,88 + 2105,62 = 3496,5 \text{ H}.$$

При вращающемся внутреннем кольце подшипника принимаем значение коэффициента V вращения V=1.

Находим и сравниваем с параметром e осевой нагрузки отношение для левого подшипника:

$$\frac{F_{aA}}{V \cdot R_A} = \frac{1390,88}{1 \cdot 3989,89} = 0,35 < e = 0,42,$$

а также правого подшипника:

$$\frac{F_{aB}}{V \cdot R_{B}} = \frac{3496,5}{1 \cdot 1118,1} = 3,12 > e = 0,42.$$

В результате получаем, что для левой опоры коэффициенты радиальной и

осевой нагрузки $X_A=1,\ Y_A=0,\$ а для правой опоры $X_B=0,4,\ Y_B=0,4\cdot {\rm ctg}\,15,6422^\circ=1,43$.

Учитывая, что воспринимаемая подшипниками нагрузка – с умеренными толчками, принимаем значение коэффициента K_{E} безопасности $K_{E}=1,4,$ а температурного коэффициента – $K_{T}=1$ (температура подшипников до 100 °C).

Эквивалентная динамическая нагрузка для левого и правого подшипников

$$P_{rA} = (V \cdot X_A \cdot R_A + Y_A \cdot F_{aA}) \cdot K_E \cdot K_T = (1 \cdot 1 \cdot 3989, 89) \cdot 1, 4 \cdot 1 = 5584, 6 \text{ H};$$

$$P_{rB} = (V \cdot X_B \cdot R_B + Y_B \cdot F_{aB}) \cdot K_E \cdot K_T =$$

$$= (1 \cdot 0, 4 \cdot 1118, 1 + 1, 43 \cdot 3496, 5) \cdot 1, 4 \cdot 1 = 7626, 13 \text{ H}.$$

Дальнейший расчет ведем для наиболее нагруженного подшипника и определяем для него ресурс L работы в миллионах оборотов:

$$L = 60 \cdot 10^{-6} \cdot n_V \cdot t_\Sigma = 60 \cdot 10^{-6} \cdot 22,13 \cdot 60000 = 79,67$$
 млн об.

Определяем действительную динамическую грузоподъемность подшипника:

$$C_{\mathcal{A}} = P_{rB} \cdot \sqrt[p]{\frac{L}{a_1 \cdot a_{23}}} = 7626,13 \cdot \sqrt[3,33]{\frac{79,67}{1 \cdot 0,65}} = 32318,1 \text{ H},$$

где a_1 – коэффициент долговечности, при вероятности безотказной работы P(t)=0.9 коэффициент $a_1=1$;

 a_{23} — обобщённый коэффициент влияния качества металла, технологии производства, конструкции и условий эксплуатации, для роликовых подшипников при нормальных условиях a_{23} = 0,65;

p — показатель степени, для роликовых подшипников p = 3,33. Условие выбора подшипников по динамической грузоподъемности

$$C_{II} \leq C$$

выполняется с большим запасом, т. к. 32318,1 H < 119000 H.

Список литературы

- 1 **Иванов, М. Н.** Детали машин : учебник для академического бакалавриата / М. Н. Иванов, В. А. Финогенов. 15-е изд., перераб. Москва: Юрайт, 2018. 408 с.
- 2 Детали машин. Раздел «Соединения»: методические указания / Сост. А. М. Даньков. Могилев: Белорус.-Рос. ун-т, 2014. 32 с.
- 3 Детали машин : методические рекомендации / Сост. А. Е. Науменко. Могилев: Белорус.-Рос. ун-т, 2019. 48 с.
- 4 **Черменский, О. Н.** Подшипники качения: справочник-каталог / О. Н. Черменский, Н. Н. Федотов. Москва: Машиностроение, 2003. 576 с.