МЕЖГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ»

Кафедра «Технология машиностроения»

СИСТЕМЫ АВТОМАТИЗИРОВАННОГО ПРОЕКТИРОВАНИЯ И ПРОИЗВОДСТВА

Методические рекомендации к лабораторным работам для магистрантов направления подготовки 15.04.06 «Мехатроника и робототехника» очной и заочной форм обучения

Могилев 2023

Рекомендовано к изданию учебно-методическим отделом Белорусско-Российского университета

Одобрено кафедрой «Технология машиностроения» «22» ноября 2022 г., протокол № 6

Составитель канд. техн. наук, доц. М. Н. Миронова

Рецензент канд. техн. наук, доц. Д. М. Свирепа

Методические рекомендации предназначены для выполнения лабораторных работ по дисциплине «Системы автоматизированного проектирования и производства» магистрантами направления подготовки 15.04.06 «Мехатроника и робототехника» очной и заочной форм обучения. Изложены методики выполнения лабораторных работ.

Учебно-методическое издание

СИСТЕМЫ АВТОМАТИЗИРОВАННОГО ПРОЕКТИРОВАНИЯ И ПРОИЗВОДСТВА

Ответственный за выпуск	В. М. Шеменков
Корректор	А. А. Подошевко
Компьютерная верстка	Н. П. Полевничая

Подписано в печать . Формат 60×84/16. Бумага офсетная. Гарнитура Таймс. . Уч.-изд. л. . Тираж 36 экз. Заказ №

Издатель и полиграфическое исполнение: Межгосударственное образовательное учреждение высшего образования «Белорусско-Российский университет». Свидетельство о государственной регистрации издателя, изготовителя, распространителя печатных изданий № 1/156 от 07.03.2019. Пр-т Мира, 43, 212022, г. Могилев.

© Белорусско-Российский университет, 2023

Содержание

Инструкция по охране труда при проведении лабораторных	
работ	4
1 Лабораторная работа № 1. Создание библиотечных элементов	
в графических системах САПР	5
2 Лабораторная работа № 2. Параметрическое моделирование	
в графических системах САПР	9
Список литературы	16

Инструкция по охране труда при проведении лабораторных работ

Общие требования безопасности

1 Для работы на ПЭВМ в компьютерном классе допускаются студенты, прошедшие обучение и проверку знаний по мерам безопасности.

2 Студенты должны соблюдать правила внутреннего распорядка. Не допускается находиться в классах в верхней одежде, в состоянии алкогольного, токсического или наркотического опьянения.

3 При проведении практических работ необходимо соблюдать правила пожарной безопасности, знать места расположения первичных средств пожаротушения.

Требования безопасности перед началом работы

1 Внимательно изучить содержание и порядок проведения лабораторной работы, а также безопасные приемы его выполнения.

2 В случае неисправности оборудования немедленно сообщить об этом преподавателю и до ее устранения к работе не приступать (работать на неисправном оборудовании запрещается).

Требования безопасности во время работы

Студенту при работе на ПЭВМ запрещается:

– прикасаться к задней стенке системного блока (процессора) при включенном питании;

– загромождать верхние панели устройств ненужными бумагами и посторонними предметами;

– допускать попадания влаги на поверхность системного блока, монитора, рабочую поверхность клавиатуры и другие устройства.

Требования безопасности по окончании работы

1 Произвести закрытие всех активных задач.

2 Отключить питание системного блока (процессора).

3 Осмотреть и привести в порядок рабочее место.

4 Предупредить преподавателя обо всех, даже малейших и незначительных, неисправностях оборудования.

1 Лабораторная работа № 1. Создание библиотечных элементов в графических системах САПР

Цель работы: приобретение практических навыков создания библиотечных элементов в графических системах САПР.

Задание

Создать пользовательскую библиотеку установочных элементов станочных приспособлений.

Теоретические сведения

Любой масштабный проект SolidWorks состоит из единичных деталей, а также элементов, которые повторяются с каждой новой сборкой.

Для упрощения работы конструктора разработчики предусмотрели целый раздел, который дает возможность использовать готовые детали. Эти детали могут иметь индивидуальное исполнение, а также быть стандартизированными.

Меню библиотеки 🖬 проектирования находится справа во второй закладке сверху (рисунок 1.1).

Рисунок 1.1 – Меню библиотеки проектирования

Меню библиотеки содержит три базовых раздела:

1) дизайнерская библиотека – позволяет использовать различные базовые детали и заготовки, которые включает в себя программный пакет SolidWorks;

2) библиотека стандартных изделий – это детали, которые находятся в ГОСТах различных стран;

3) интернет-библиотека позволяет соединяться с различными ресурсами, в которых можно найти нужные детали под определенную ситуацию.

Методика выполнения лабораторной работы

Для создания пользовательской библиотеки для сборки необходимо действовать в следующей последовательности.

1 Создать новую папку в дизайнерской библиотеке (Design Library), назвать ее «Компоненты сборки» и выбрать «Добавить в библиотеку» (рисунок 1.2).

Рисунок 1.2 – Иллюстрация добавления папки в библиотеку Design Library

2 В менеджере свойств команды «Добавить в библиотеку» (рисунок 1.3) в группе «Объекты для добавления» следует перечислить объекты дерева построений, которые должны образовать библиотечный элемент. В полях группы «Сохранить в» задать имя библиотечного элемента, выбрать его расположение в папках библиотек, в качестве типа файла задать .sldprt. При желании придумать текстовое описание элемента. Затем нажать кнопку .

94 Исследова проектиров	este strong in	,Ø	i M	dia taccom	NT CTATAL
- Элементы	Эскиз	Анал	изиро	вать	Dim
	0	÷			
S I	18	\$	۲		
∰ Добава ✓ ×	те в биб	лиоте	ĸy	0	
Объекты дл	я добавл	ения		^	
Крышка сал	ismaa St.	DPRT	_		
	3			-	
сохранить в Имя файла:				^	
Крышка сал	ьника		_		
Папка Библи	отеки				
	sign libra annotat assembl feature: forming motion parts routing smart co libration	ry tions lies s tools	ents Gopkie		101
Параметры Тип файла: Part (*.sidori	5			^	
Описание	4.				
	-	7	0		
			-	_	

Рисунок 1.3 – Менеджер свойств команды «Добавить в библиотеку»

3 Закрыть файл детали и открыть файл сборки.

4 Вызвать библиотеку проектирования, нажав на кнопку 🚮.

Теперь в библиотеке будет новый компонент сборки – объект, который был добавлен как библиотечный элемент (например, крышка сальника) (рисунок 1.4).

Рисунок 1.4 – Иллюстрация состава библиотеки «Компоненты сборки»

5 Чтобы добавить компонент в сборку, необходимо перетянуть его в рабочую область. SolidWorks предложит выбрать нужную конфигурацию детали (рисунок 1.5). Далее установить деталь на ее место, используя сопряжения.

Рисунок 1.5 – Иллюстрация добавления детали в сборку

Содержание отчета

1 Цель работы.

2 Объекты для добавления в пользовательскую библиотеку и их конфигурации.

3 Результаты создания пользовательской библиотеки с новыми компонентами сборки.

4 Сборочный узел.

5 Выводы.

Контрольные вопросы

1 Как создать новую конфигурацию изделия?

2 Для чего используются библиотеки стандартных деталей и изделий?

3 Назовите этапы создания библиотечных элементов в САПР.

2 Лабораторная работа № 2. Параметрическое моделирование в графических системах САПР

Цель работы: приобретение практических навыков построения трехмерных моделей, используя параметрическое моделирование.

Теоретические сведения

Параметрическое моделирование (параметризация) – моделирование (проектирование) с использованием параметров элементов модели и соотношений между этими параметрами.

Конструктор в случае параметрического проектирования создаёт математическую модель объектов с параметрами, при изменении которых происходят изменения конфигурации детали, взаимные перемещения деталей в сборке и т. п.

Параметризация необходима для того, чтобы поставить одни размеры в зависимость от других.

С точки зрения математики конструкция изделия описывается геометрическими примитивами (точками, линиями, кривыми и др.), которые, в свою очередь, характеризуются параметрами: координатами, размерами, углами, допусками и т. п. Эти параметры могут быть выражены с помощью обычных переменных, рассчитаны по формулам или выбраны из баз данных.

Таким образом, любая конструкция может быть полностью изменена путем изменения значений одной или нескольких управляющих переменных.

Задание

Построить 3D-модель детали, выданной преподавателем. Создать не менее трех наборов размеров детали.

Методика выполнения лабораторной работы

Для параметризации размеров необходимо ввести зависимости размеров в таблицу уравнений SolidWorks. Для этого выбрать в меню «Инструменты» пункт «Уравнения» (рисунок 2.1).

Рисунок 2.1 – Меню «Инструменты»

Появится диалоговое окно «Уравнения, глобальные переменные и размеры» (рисунок 2.2). Следует учитывать, что параметризируются размеры, а не линии.

Исходные данные задаются в разделе глобальных переменных. В столбце «Значение / Уравнение» указываются значения переменных или уравнения, служащие для вычисления значения переменной. В уравнениях имена переменных указываются в кавычках. В уравнениях первым указывается зависимый размер, после знака «равно» указывается управляющий размер и арифметические действия над ним, если они требуются.

Для добавления функций из выпадающего меню (рисунок 2.3) выбрать пункт «Функции».

Имя	Значение / Уравнение	Равняется	Заметки	OK
□ Глобальные переменн	ые			Отнана
Добавить глобальную	переменнун			
Элементы				Импорт
Добавить погашение э	лемента			
Уравнения				Экспорт
"D2@Эскиз1"	="D1@Эскиз1"*2	\checkmark		
				Справка

Рисунок 2.2 – Диалоговое окно «Уравнения, глобальные переменные и размеры»

Рисунок 2.3 – Иллюстрация добавления функций из выпадающего меню

В таблице уравнений во втором блоке «Элементы» можно гасить или высвечивать определенные элементы модели в зависимости от выполнения условия.

После ввода всех переменных и уравнений сохранить таблицу, нажав кнопку «ОК».

В диалоговое окно «Уравнения, глобальные переменные и размеры» можно вводить имя размера вручную, которое можно узнать, кликнув на

интересующий размер. Также можно ввести в диалоговое окно значение размера, кликнув на сам размер.

При добавлении размеров на эскизе вместо ввода численного значения необходимо приравнять его к глобальной переменной. Для этого в окне ввода размера поставить знак равенства. Это активирует ввод уравнения. После чего из выпадающего списка выбрать глобальную переменную (рисунок 2.4).

Рисунок 2.4 – Иллюстрация ввода уравнения для вычисления значения размера

На рабочем поле появится численное значение размера. При этом рядом с ним появится символ сигма, указывающий на то, что значение получилось путем вычисления (рисунок 2.5).

Рисунок 2.5 – Иллюстрация параметризованного размера

Закончить редактирование эскиза, нажав на кнопку «Выход из Эскиза». Перейти к созданию 3D-модели.

После того как создана 3D-модель детали, необходимо создать «Таблицу параметров».

Выбрать меню «Вставка», «Таблицы», «Таблицы параметров» (рисунок 2.6).

На начальном этапе необходимо указать способ ввода исходных данных (рисунок 2.7):

1) *пустой* – создается пустая Exel-таблица, в которую пользователь самостоятельно добавляет переменные и их значения;

2) *авто-создать* – предлагается выбор из списка всех созданных в 3D-модели переменных для автоматической вставки в таблицу Microsoft Exel; 3) *из файла* – используется, в основном, при экспорте данных в Microsoft Exel из других приложений.

Рисунок 2.7 – Иллюстрация способов ввода исходных данных

Появляется интерфейс программы Excel и диалоговое окно «Размеры». В данном окне выбираются те размеры, которые необходимы в таблице параметров (рисунок 2.8).

Рисунок 2.8 – Диалоговое окно «Размеры»

После нажатия кнопки «ОК» откроется таблица параметров в окне программы Excel.

Таблица параметров служит для подстановки массива значений из документа Microsoft Excel в переменные модели. Эти значения могут быть как численными (например, величины размеров), так и логическими (элемент погашен/непогашен).

В красном овале таблицы параметров (рисунок 2.9) находится название варианта набора размеров. В красном прямоугольнике указываются значения, которые принадлежат соответствующему набору размеров. Чтобы закрыть таблицу параметров, необходимо кликнуть на свободное место.

Рисунок 2.9 – Таблица параметров в окне программы Excel

В таблице параметров программы Excel необходимо создать несколько наборов размеров (рисунок 2.10).

После этого можно закрыть таблицу параметров и увидеть созданные наборы размеров во вкладке «Конфигурации». Выбирая один из наборов двойным кликом, можно наблюдать за изменением размера детали (рисунок 2.11).

Рисунок 2.10 – Заполненная таблица параметров в окне программы Excel

Рисунок 2.11 – Иллюстрация вкладки «Конфигурации»

Содержание отчета

1 Цель работы.

2 Параметрический эскиз.

3 Диалоговое окно «Уравнения, глобальные переменные и размеры».

4 Таблица параметров.

5 Результаты параметризации эскиза (конфигурации).

6 Выводы.

Контрольные вопросы

1 Что такое «параметрическое моделирование»?

2 Назовите типы параметризации.

3 Назовите этапы создания модели при вариационной параметризации.

4 Охарактеризуйте геометрическую параметризацию.

5 В чем заключается иерархическая параметризация?

Список литературы

1 **Голованов, Н. Н.** Геометрическое моделирование : учебное пособие / Н. Н. Голованов. – Москва : КУРС ; ИНФРА-М, 2021. – 400 с.

2 Разин, И. Б. Геометрическое моделирование и машинная графика. Лабораторный практикум по курсу / И. Б. Разин. – Москва: МГУДТ, 2009. – 100 с.

3 Кобелев, Н. Б. Имитационное моделирование : учебное пособие / Н. Б. Кобелев, В. А. Половников, В. В. Девятков; под общ. ред. Н. Б. Кобелева. – Москва : КУРС ; ИНФРА-М, 2018. – 368 с.

4 Компьютерное моделирование : учебник / В. М. Градов [и др.]. – Москва : КУРС ; ИНФРА-М, 2020. – 264 с.

5 Берлинер, Э. М. САПР конструктора-машиностроителя / Э. М. Берлинер, О. В. Таратынов. – Москва : Форум; ИНФРА-М, 2019. – 288 с.

6 Шишов, О. В. Современные технологии и технические средства информатизации : учебник / О. В. Шишов. – Москва : ИНФРА-М, 2021. – 462 с.