А.В. Хомченко, И.У. Примак, А.Н. Василенко

ГУ ВПО «Белорусско-российский университет», Могилев, Беларусь

ПОЛЯРИЗАЦИОННАЯ ИНТЕРФЕРОМЕТРИЯ НЕОДНОРОДНЫХ ПОЛЕЙ МЕХАНИЧЕСКИХ НАПРЯЖЕНИЙ В ЗАКАЛЕННОМ СТЕКЛЕ

Введение

Особенностью производства закаленных стекол являются наличие в них остаточных, так называемых, закалочных напряжений, от которых зависят основные свойства закаленного стекла. Диагностика напряжений, а также управление ими при соответствующей организации технологического процесса являются неотъемлемой частью производства закаленного стекла. Известен ряд разрушающих и неразрушающих методов измерения напряжений в стекле, которые основываются на измерении обусловленной этими напряжениями анизотропии оптических характеристик материала.

1. Поляризационная интерферометрия закаленного стекла

Принципиальная оптическая схема установки, используемой для измерения распределения разности фаз при линейном двулучепреломлении в закаленном стекле, представлена в [1]. Линейно поляризованный свет, пройдя через исследуемое стекло, в котором присутствуют механические напряжения, меняет состояние поляризации, проходит через анализатор и попадает в фоторегистрирующее устройство. Регистрируемая интенсивность света I(x,y) является функцией двух координат (рисунок 1). Обрабатывая распределения I(x,y), можно восстановить разность фаз $\delta(x,y)$ в каждой точке стекла и, учитывая ее взаимосвязь с напряжениями, воспроизвести поле напряжений. Для определения δ на начальном этапе регистрируется распределение при некотором фиксированном (но произвольно выбранном) угле α и скрещенных анализаторе и поляризаторе ($\gamma = 90^{\circ}$):

$$I(x, y) = I_{\perp}^{(1)} = I_{p}T_{1}\sin^{2}2\alpha \cdot \sin^{2}\frac{\delta}{2},$$
(1)

где $T_1 = T(\alpha, \chi = 90^\circ)$, $I_p = I_p(x, y)$ – интенсивность света на выходе из поляризатора, T=T(x,y) – коэффициент учитывающий отражение света от поверхностей стекла, $\alpha = \alpha(x, y)$ – угол между оптической осью образца и плоскостью пропускания поляризатора, $\delta = \delta(x, y)$ – разность фаз между обыкновенной и необыкновенной волнами. Затем ориентируя анализатор таким образом, чтобы $\chi = 90^\circ$, регистрируют

$$I(x, y) = I_{\parallel}^{(1)} = I_p T_1 (1 - \sin^2 2\alpha \cdot \sin^2 \frac{\delta}{2}).$$
 (2)

Измеренные распределения интенсивности позволяют определить произведение функций

$$\sin^2 2\alpha \cdot \sin^2(0.5k\delta) = I_{\perp}^{(1)} / (I_{\perp}^{(1)} + I_{\parallel}^{(1)}).$$
(3)

Далее после поворота поляризатора на угол равный 45° (т.е. имеем α +45°) и ориентации анализатора под углом $\chi = 90^{\circ}$ интенсивность света, прошедшего через образец, определяется как

$$I(x, y) = I_{\perp}^{(2)} = I_p T_2 \cos^2 2\alpha \cdot \sin^2 \frac{\delta}{2}, \ T_2 = T(\alpha + 45^0, \chi = 90^0).$$
(4)

На последнем этапе измерение распределения интенсивности осуществляется при ориентации поляризатора относительно исследуемого образца под углами $\alpha + 45^{\circ}$ и $\chi = 0^{\circ}$:

$$I(x, y) = I_{\parallel}^{(2)} = I_p T_2 (1 - \cos^2 2\alpha \cdot \sin^2 \frac{\delta}{2}).$$
 (5)

Обработка этих измерений позволяет определить величину произведения

$$\cos^{2} 2\alpha \cdot \sin^{2}(0.5k\delta) = I_{\perp}^{(2)} / (I_{\perp}^{(2)} + I_{\parallel}^{(2)}).$$
(6)

Предлагаемый подход позволяет уйти от абсолютных измерений интенсивности света и избавиться от изоклин, которые искажают картину визуализации напряжений и не могут быть исключены для широкоформатных стекол с помощью. Распределение разности фаз $\delta(x,y)$, получаемое на основе обработки распределения интенсивности с учетом выражений (3) и (6), в общем случае имеет вид

$$\delta(x, y) = (kC / \cos 2\alpha) \int_{-d/2}^{d/2} (\sigma_X(x, y, z) - \sigma_Y(x, y, z)) dz, \qquad (7)$$

где σ_X и σ_Y – напряжения нормальные плоскостям OYZ и OXZ соответственно, *с*-относительный оптический коэффициент напряжения, *d* – толщина стекла. Учитывая взаимосвязь фазы волны с напряжениями можно воспроизвести поле механических напряжений.

Методами поляриметрии исследованы образцы закаленного стекла различной толщины, изготовленные при различных режимах закалки. Измерения механических напряжений проводились на созданной экспериментальной установке полярископа большого поля с использованием разработанного метода, а также при помощи полярископа-поляриметра ПКС-250. На рисунке 1 представлено распределение интенсивности поляризованного света ($\lambda = 532$ нм), прошедшего через стекло размером 300 × 300 мм, толщиной 6 мм. Распределение механических напряжений и оптической разности хода на участке A-A, полученные двумя методами представлено на рисунке 2.

Рисунок 1 – Регистрируемая интенсивность света, прошедшая через исследуемое стекло

Рисунок 2 – Распределение механических напряжений σ и оптической разности хода Δ в плоскости стекла; • и ▲ – данные ПКС 250

2. Регистрация рассеянного света для измерения профиля механических напряжений

Оценка поверхностных напряжений требует предварительного измерения центрального напряжения, что возможно, например, на основе анализа рассеяния света на неоднородностях распределения показателя преломления в стекле. Наблюдение такого рассеяния позволяет визуализировать распространение света в анизотропном стекле. При этом, анализируя распределения интенсивности рассеянного света можно практически локально исследовать анизотропию показателя преломления и напряжения в стекле [2]. Рассмотрим процедуру измерения, используемую в этих методах. Схема измерений представлена на рисунке 3.

Рисунок 3 – Схема измерения: 1-источник света, 2-поляризатор, 3-линза, 4-исследуемое стекло, 5-фоторегистрирующее устройство

Линейно поляризованный свет нормально падает на торец стекла 4 и проходит через него. Рассеянный свет регистрируется в плоскости перпендикулярной направлению распространения фоторегистрирующим устройством 6 (фотоприемник или матрица фотоприемников). Интенсивность рассеянного света определяется как

$$I(z,x) = I_0 \sin^2(0.5k_0 C\sigma(z)x),$$
(8)

если направление наблюдения рассеянного света совпадает с направлением поляризации падающего на стекло света и в виде

$$I(z,x) = I_0 \cos^2(0,5k_0 C\sigma(z)x),$$
(9)

если направление наблюдения рассеянного света перпендикулярно направлению поляризации падающего на стекло света. Здесь I_0 – некоторая постоянная, k_0 – волновое число вакуума, С – константа фотоупругости, $\sigma(z)$ – функция описывающая распределение напряжения в стекле.

На практике распределение напряжений по толщине стекла описывают функцией вида [2]

$$\sigma = \sigma_{u} (1 - 12(z/d)^{2}), \qquad (10)$$

где d – толщина стекла, σ_{u} – напряжение при z = 0 (центральное напряжение растяжения).

Анализ регистрируемых зависимостей I(z, x) построенных при сканировании пучком света параллельно оси 0z позволяет получать оценки зависимостей напряжений $\sigma(z)$. Такое определение возможно, если проанализировать рассеяние света в случае его распространения вдоль оси образца (т.е. при z = 0, см. рисунок 3). Оценка σ_{u} получается на основе метода наименьших квадратов, в котором минимизируется сумма квадратов невязок

$$S(A_0, A_1, \sigma_u) = \sum_{i=1}^n \left(I_i^e - I^t(x_i, A_0, A_1, \sigma_u) \right)^2,$$
(11)

где I_i^e – измеренное значение интенсивности рассеянного света для координаты x_i ($i = \overline{1,n}$), I^t – теоретическая модель рассеяния света, которая с учетом (8) запишется как

$$I^{t}(x_{i}, A_{0}, A_{1}, \sigma_{u}) = A_{1} - 0.5A_{0}\cos(k_{0}\sigma_{u}Cx_{i}), \qquad (12)$$

а в случае (9)

$$I^{t}(x_{i}, A_{0}, A_{1}, \sigma_{u}) = A_{1} + 0.5A_{0}\cos(k_{0}\sigma_{u}Cx_{i}), \qquad (13)$$

В этих моделях A₁ описывает некоторую постоянную составляющую [2].

На рисунке 4 представлены результаты исследования рассеяния света с длиной волны 0,533 мкм, образцом стекла толщиной 6 мм, ширина и длина

которого соответственно равны 100 и 140 мм. Обработка полученной экспериментально зависимости I(x) с использованием (12) дала следующую оценку $\sigma_u = 40,2$ МПа (согласно (10) поверхностное напряжение стекла 80,4 МПа). Как следует из рисунка 4 зависимость I(x) не является в строгом понимании периодической (расстояние между минимумами зависимости I(x) не везде одинаковое). Приемлемое совпадение с решением задачи минимизации функционала (11) наблюдается лишь в области от 50 мм до 110 мм. Это можно объяснить тем, что напряжения σ_u не везде в стекле при z = 0 постоянны, либо световые лучи распространяются не вдоль оси образца (т. е. $z \neq 0$), что приводит к их искривлению (эффект отрицательной линзы).

Рисунок 5 – Распределение напряжения вдоль светового пучка

Все это в свою очередь означает, что свет распространяется в областях, где напряжение не постоянно. Кроме того, следует отметить, что вблизи краев листа стекла ($x \sim d$) напряжения не описываются моделью (10). Учитывая все выше сказанное можно получить оценки σ вдоль распространения пучка l. Для этого будем полагать, что в пределах между минимумами зависимости I(l) напряжения σ (l) постоянны.

На рисунке 5 результаты такого модерирования представлены точками (непрерывная линия – ранее найденное при решении задачи минимизации функционала (11) значение напряжения 40,2 МПа).

Анализируя рисунки 4 и 5 можно сделать вывод, что напряжение на пути распространения света возрастает. Это означает, что главная причина отклонения экспериментальных данных от модельного описания (8), (9) связана именно с изменением центрального напряжения σ_u .

Заключение

Представленные результаты исследования оптических свойств закаленных стекол позволяют сделать вывод, что предложенный подход позволяет корректно оценивать распределение величины напряжений в анизотропных неоднородных объектах большой площади. Выполнен сравнительный анализ распределения напряжений в образцах закаленных стекол различной толщины и различной степени закалки.

Литература

1. Измерение распределения разности фаз при линейном двулучепреломлении в твердых телах с внутренними напряжениями / А.В. Хомченко [и др.] // Известия ГГУ им Ф. Скорины. Ест. науки. – 2016. – № 3 (96). – С. 124–131.

2. Scattered laser light fringe patterns for stress profile measurement in tempered glass plates / S. Hödemann [et al.] // Glass Technology. – 2014. – Vol. 55. – № 3. – P. 90–95.