ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ И 3D МОДЕЛИРОВАНИЕ

(наименование дисциплины)

АННОТАЦИЯ К УЧЕБНОЙ ПРОГРАММЕ УЧРЕЖДЕНИЯ ВЫСШЕГО ОБРАЗОВАНИЯ

Специальность 1-36 01 01 «Технология машиностроения»

	Форма получения высшего образования	
	Очная (дневная)	
Курс	2	
Семестр	3	
Лекции, часы	34	
Лабораторные занятия, часы	34	
Курсовая работа, семестр	3	
Экзамен, семестр	3	
Аудиторных часов по учебной дисциплине	68	
Самостоятельная работа, часы	132	
Всего часов по учебной дисциплине / зачетных единиц	200/6	

1. Краткое содержание учебной дисциплины

Целью учебной дисциплины является изложение студентам теоретических основ и практических примеров построения трехмерных моделей машиностроительных объектов, а также моделирования динамики и анализа прочности деталей машин.

2. Результаты обучения

Задачей учебной дисциплины является приобретение навыков построения трехмерных моделей машиностроительных объектов, а также моделирования динамики и анализа прочности деталей машин.

В результате освоения учебной дисциплины обучающийся должен знать:

- базовые технологии программирования на алгоритмическом языке;
- методы компьютерного проектирования конструкций и технологий;
- основы построения трехмерных моделей машиностроительных объектов;
- основные принципы решения задач инженерного анализа динамики и прочности машин;
- современные компьютерные системы автоматизированного проектирования (CAD) и системы инженерного анализа (CAE).

Студент, изучивший дисциплину, должен уметь:

- строить трехмерные твердотельные модели в современных САD-системах;
- производить инженерный анализ динамики и прочности машин в современных САЕ-системах;
- творчески применять полученные знания при решении задач инженерного анализа машиностроительных объектов.

Студент, изучивший дисциплину, должен владеть:

- навыками программирования на алгоритмическом языке;
- навыками компьютерного проектирования конструкций и технологий;
- навыками решения задач компьютерного анализа динамики и прочности машин.

3. Формируемые компетенции

Освоение данной учебной дисциплины должно обеспечивать формирование следующих компетенций:

- СК-1.1 - знать базовые технологии программирования на алгоритмическом языке высокого уровня, программные средства компьютерного проектирования, методы компьютерного выполнения чертежей и других графических работ.

4. Требования и формы текущей и промежуточной аттестации

Промежуточная аттестация включает устную защиту лабораторных работ и выполнение тестовых заданий. При защите лабораторных работ студент отвечает на контрольные вопросы.

Промежуточная аттестация проводится в виде экзамена. В экзаменационный билет включено два теоретических вопроса и задание, связанное с построением 3D-модели.