COURSE SYLLABUS ABSTRACT OF HIGHER EDUCATION INSTITUTION

Specialty 1-53 0102 Automated information processing systems

	Study mode		
	Full-time	Part-time	
Year	2	2	
Semester	3	3	
Lectures, hours	34	8	
Practical (seminar) classes, hours	34	6	
In-class test (semester, hours)	3	3	
Exam, semester	68	2 ч.	
Contact hours	52	3	
Independent study, hours			
Total course duration in hours / credit units			

1. Course outline.

Elements of combinatorics; event probability; conditional probability; sequence of independent tests; scalar random variables; numerical characteristics of scalar random variables; laws of distribution of some random variables; vector random variables; numerical characteristics of vector random variables; limit theorems of probability theory; sample and its characteristics; statistical estimates of distribution parameters; interval estimation; statistical verification of hypotheses; consent criteria; linear regression and correlation; basic concepts of the theory of random processes.

2. Course learning outcomes.

As a result of learning the academic discipline, the student must:

- know: basic provisions, formulas and theorems of probability theory for random events, one-dimensional and multidimensional random variables; basic methods of statistical processing and analysis of random experimental data;
- be able to: build mathematical models for typical random phenomena; use probabilistic methods in solving problems important for engineering applications; use probabilistic and statistical methods in calculating the reliability of radio engineering systems and networks;
- possess: modern software for statistical data processing; the skills of analyzing the initial and output data of the tasks being solved and the forms of their presentation; skills in using applied methods of probability theory and mathematical statistics.

3. Competencies.

UK-12 Possess the skills of creative analytical thinking.
BOD-4 Apply the tools of probability theory and mathematical statistics to form a probabilistic approach in engineering.
4. Requirements and forms of midcourse evaluation and summative assessment.

Intermediate attestation - two computer tests, performance and defense of an individual task, current attestation exam. The first of the computer tests is estimated from 0 to 30 points, the second - from 0 to 15 points, the individual task - from 0 to 15 points. The minimum credit score for the first test is 18 , for the second test and for an individual task - a total of 18 . The exam is assessed from 0 to 40 points. The minimum score for passing the exam is 15 . The final grade is determined in accordance with the table.

Score	10	9	8	7	6	5	4	3	2	1	0
Points	$100-94$	$93-87$	$86-80$	$79-72$	$71-65$	$64-58$	$57-51$	$50-41$	$40-17$	$16-1$	0

