УДК 630*377.4 ОЦЕНКА ТОПЛИВНОЙ ЭКОНОМИЧНОСТИ ПРИ РАБОТЕ КОЛЕСНЫХ ЛЕСНЫХ МАШИН

В. А. СИМАНОВИЧ, В. С. ИСАЧЕНКОВ, А. И. СМЕЯН, С. Э. БОБРОВСКИЙ

Учреждение образования «БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ» Минск, Беларусь

Современные лесные колёсные агрегатные машины характеризуются сложным спектром нагружения по частотному и амплитудному диапазону нагрузок. Исследование и моделирование режимов нагружения должно основываться на рассмотрении динамической системы «колёсная трелёвочная машина — качка деревьев» во взаимосвязи всех её элементов [1], что позволит выявить закономерность формирования нагружения от внутренних и внешних факторов и оценить количественную сторону.

Основными нагрузками, характеризующими работу движетеля на эксплуатационных режимах, является величина крутящего момента, частота вращения коленчатого вала, количество оборотов на 1 км пути и часовой расход топлива к эксплуатационному. Это дает возможность определить энергетический параметр через объём выполненной работы, что позволяет комплексно оценить тяговые свойства транспортной машины при работе. Проводимые статические исследования режимов работы двигателя в условиях эксплуатации характерных позволяет выявить области преобладающих эксплуатационных частот вращения коленчатого вала. Производя подбор передаточных чисел трансмиссии можно добиться смещения этой области в сторону частот экологического движения по топливу, что в конечном счете позволит выбрать необходимые изменения в конструкции машины [2].

Создание колёсных агрегатных лесных машин по модульному принципу предполагает тот факт, что на всех лесных машинах установлены двигатели с высоким запасом крутящего момента. Такое обстоятельство не всегда выполняется ввиду проведения работ различного назначения в лесных условиях. Эксплуатационные испытания лесных агрегатных машин отечественного и зарубежного производства на предприятиях лесной отрасли подтвердили предположение о том, что малый запас крутящего момента приводят к снижению производительности машин на 11–17 %, потерям времени на остановки агрегата при переключении передач, более длительной работе машины на пониженных передачах.

В исследованиях авторов математическая модель двигателя внутреннего сгорания была взята с учётом его статической характеристики [1] изменения величины крутящего момента $M_{\rm g}$ от частоты вращения коленчатого вала $\dot{\phi}_{\rm A}$ и

положения педали подачи топлива H от холостого хода до полного нажатия. Модель учитывала изменение крутящего момента на различных характеристиках. С учетом вышесказанного расчетным путем были выведены зависимости удельного расхода топлива на рабочем участке статической характеристики двигателя при учёте текущего значения частоты вращения вала двигателя $\dot{\phi}_{A}$ и частоты вращения на режиме номинальной мощности $\dot{\phi}_{\Pi P}$.

Для неустановившихся режимов работы двигателя разница в подаче топлива (по сравнению с установившимися) может достигать 20 %. Учет расхода топлива при таких условиях корректировался коэффициентом пропорциональности λ . По уравнению абсолютного расхода топлива $Q_{\rm T}$:

$$\dot{Q}_{\mathrm{T}} = g_{e} (H, \dot{\varphi}_{\mathrm{A}}, \ddot{\varphi}_{\mathrm{A}}) \cdot N_{\mathrm{A}} / (3600 \cdot \gamma_{\mathrm{T}}),$$

производилось сравнение полученных расчетных величин $Q_{\rm T}$ для колесных трелёвочных тракторов с различной конструкцией прицепного трелевочного оборудования. Так введение в конструкцию оборудования колёсной опоры снижает показатели расхода топлива на переходных режимах на 4–7 % при одновременном увеличении производительности транспортных операций на 6–11 %. Это происходит за счёт сокращения времени при преодолении грунтов с низкой несущей способностью.

Перечисленные преимущества представленной методики определения топливной экономичности колёсных трелёвочных тракторов позволяют наметить пути совершенствования работы не только машин, но и отдельных агрегатов. Методика определения расхода топлива на эксплуатационных режимах может быть использована на заводах занимающихся выпуском лесных агрегатных машин.

СПИСОК ЛИТЕРАТУРЫ

- 1. Симанович, В. А. Оценка тягово-сцепных свойств трелевочных тракторов с усовершенствованной конструкцией несущей системы / В. А. Симанович, В. С. Исаченков // Тр. БГТУ. Лесная и деревообрабатывающая промышленность. 2009. N 2. C. 116-119.
- 2. **Токарев, А. А.** Топливная экономичность и тягово-скоростные качества автомобиля / А. А. Токарев. М. : Машиностроение, 1982. 224 с.