Межгосударственное образовательное учреждение высшего образования «Белорусско-Российский университет»

УТВЕРЖДАЮ

Первый прорежер Белорусско-Российского инверситета

В.В. Машин

17 06 2022 r.

Регистрационный № УД-ТД-Т, 304/тем/уг.

КИМИХ

(название учебной дисциплины)

Учебная программа учреждения высшего образования по учебной дисциплине для специальностей:

Специальность 1-36 11 01 Инновационная техника для строительного комплекса (по направлениям)

Учебная программа составлена на основе типовой программы ТД-I.304/тип от 27.01.2010 образовательного стандарта ОСВО 1-70 03 01-2021 и учебного плана рег. № I 36-1-023-1.1 от 28.05.2021 г.; I 36-1-023-1.2 от 28.05.2021 г.

составители:

<u>Лисовая Ирина Александровна, канд. биол. наук, доцент кафедры «Технологии металлов»</u> (И.О. Фамилия, должность, ученая степень, ученое звание)

Жукова Светлана Владимировна, ст. преподаватель кафедры «Технологии металлов» (И.О. Фамилия, должность, ученая степень, ученое звание)

РЕКОМЕНДОВАНА К УТВЕРЖДЕНИЮ:

Кафедрой «Технологии металлов» (название кафедры-разработчика программы)

(протокол № 12 от 21.04.22г) Заведующий кафедрой

Д.И. Якубович

Научно-методическим советом Белорусско-Российского университета (протокол № 7 от 15.06.2022 г.)

Зам. председателя Научно-методического совета

С.А. Сухоцкий

СОГЛАСОВАНО:

Начальник учебно-методического отдела

Ведущий библиотекарь

В.А. Кемова

«14» 06 2022 г.

O.C. Mey cmoba

1 ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

1.1 Цель учебной дисциплины

Химия является одной из фундаментальных естественнонаучных дисциплин. В процессе ее изучения у студентов формируется диалектическое мышление, вырабатывается научный взгляд на мир в целом, расширяется и углубляется диалектикоматериалистическое мировоззрение. В результате изучения курса студенты должны получить современное научное представление о веществе как одном из видов движущейся материи, о механизме превращения химических соединений, понимать значение химии в промышленности и сельском хозяйстве.

Знание химии необходимо для плодотворной творческой деятельности инженера любой специальности. Современный инженер-механик, энергетик, автомобилист, строитель, работающий в любой области народного хозяйства, непрерывно сталкивается со сложными физико-химическими процессами, а также со свойствами конструкционных, инструментальных, вяжущих и других технических материалов, перечень которых стал очень широким и разнообразным. Знание курса химии необходимо для успешного изучения последующих общенаучных и специальных дисциплин.

1.2 Задачи учебной дисциплины

Задача химической подготовки современного инженера любой специальности должна заключаться не только в накоплении фактических сведений о свойствах различных материалов, не только в запоминании существующих технологических рекомендаций, а в создании у него химического мышления, помогающего ему решать различные многообразные частные проблемы физико-химического направления.

Изучение данной дисциплины должно способствовать накоплению студентами определенного комплекса знаний, необходимых для изучения последующих дисциплин и правильного использования материалов, применяемых в технике и строительстве.

В результате освоения учебной дисциплины обучающийся должен

знать:

- основные понятия и законы химии;
- состав, номенклатуру, получение и свойства представителей важнейших классов неорганических соединений: оксидов, оснований, кислот и солей;
- периодический закон, структуру периодической системы химических элементов, закономерности формирования электронной оболочки атома;
 - типы химической связи, механизм ее образования и основные характеристики;
 - основные закономерности протекания химических реакций;
 - основные понятия химии растворов;
 - теорию электролитической диссоциации;
- сущность окислительно-восстановительных реакций и основные понятия, связанные с OBP;
- основные электрохимические процессы, явление коррозии металлов, процесс и законы электролиза;
 - новейшие достижения в области химии и перспективы их использования.

уметь:

- формулировать и применять основные законы, принципы и понятия химии в соответствии с программой;
 - решать расчетные и качественные задачи;
- писать уравнения химических реакций (молекулярные, ионно-молекулярные, электронные);
- пользоваться таблицами и графиками, специальной химической посудой, лабораторными приборами и оборудованием;
 - составлять отчеты по лабораторным работам.

владеть:

- навыками выполнения основных химических лабораторных операций;
- методами определения рН растворов и определения концентраций в растворах;
- методами синтеза неорганических и простейших органических соединений.

1.3 Место учебной дисциплины в системе подготовки специалиста с высшим образованием

Дисциплина относится к научно-исследовательскому модулю (компонент учреждения высшего образования).

Перечень учебных дисциплин (циклов дисциплин), которые будут опираться на данную дисциплину:

- материаловедение и технология конструкционных материалов Кроме того, результаты изучения дисциплины используются в ходе практики и при

подготовке дипломного проекта/дипломной работы

1.4 Требования к освоению учебной дисциплины

Освоение данной учебной дисциплины должно обеспечивать формирование следующих компетенций:

Коды	Наименование формируемых компетенций							
формируемых								
компетенций								
БПК-1	Применять знания естественнонаучных учебных дисциплин для							
	экспериментального и теоретического изучения, анализа и решения							
	прикладных и инженерных задач							

1.5 Распределение учебной дисциплины по семестрам

	Форма получения высшего образования
	Очная (дневная)
Курс	1
Семестр	2
Лекции, часы	34
Лабораторные занятия, часы	16
Практические занятия, часы	16
Экзамен, семестр	2
Аудиторных часов по учебной дисциплине	66
Самостоятельная работа, часы	84
Всего часов по учебной дисциплине /зачетных единиц	150/5

2 СОДЕРЖАНИЕ УЧЕБНОГО МАТЕРИАЛА

Номера тем	Наименование тем	Содержание
1	Строение атома и систематика химических элементов	Основные сведения о строении атомов. Состав атомных ядер. Изотопы и изобары. Электронные оболочки атомов, квантовые числа. Основные принципы заполнения электронной оболочки атомов. Электронные семейства. АВЗ. Электронные аналоги.

		Связь структуры атомов с периодической системой элементов Д. И. Менделеева. Периодический закон Д. И. Менделеева. Химические аналоги. Причина периодичности свойств. Изменение свойств химических элементов: энергия ионизации и сродства к электрону, электроотрицательность, окислительно-восстановительные свойства, металлические свойства, кислотно-основные свойства оксидов и гидроксидов (оксидгидроксидов).
2	Химическая связь	Химическая связь и валентность элементов. АВЗ. Природа химической связи и причина ее образования. Метод валентных связей, понятие о методе молекулярных орбиталей. Основные типы и характеристики химического взаимодействия. Ковалентная и ионная типы связей. Степень окисления элементов. Высшая и низшая степени окисления, связь с периодической системой Д. И. Менделеева Гибридизация электронныхорбиталей Агрегатное состояние вещества. Свойства веществ в различных состояниях. Строение твердого тела. Особенности кристаллического состояния вещества. Химическая связь в кристаллах: ионные, молекулярные, атомные, металлические кристаллические решетки. Силы межмолекулярного взаимодействия. Водородная связь Донорно-акцепторная связь. Комплексные соединения.
3	Энергетика химических процессов, Химическое равновесие	Энергетические эффекты химических реакций. Внутренняя энергия и энтальпия. Термохимия, термохимические законы. Энтальпия образования химических соединений. Энергетические эффекты при фазовых переходах. Термохимические расчеты. Энтропия и ее изменение при химических реакциях и фазовых переходах Энергия Гиббса и ее изменение при химических процессах. Условия самопроизвольного протекания химических реакций. Химическое равновесие. Константа равновесия и её связь с термодинамическими функциями. Принцип Ле-Шателье.
4	Равновесие в гетерогенных системах. Химическая кинетика	Химическое равновесие в гетерогенных системах. Экстракция. Сорбция. Поверхностно-активные вещества. Адсорбция. Адсорбционное равновесие .Гетерогенные дисперсные системы. Коллоидные системы и их получение. Строение коллоидных частиц. Агрегативная и кинетическая устойчивость частиц. Коагуляция, эмульсии. Суспензии. Скорость химических реакций. Гомогенные и гетерогенные системы. Зависимость скорости реакции от концентрации и температуры. Константа скорости реакции, энергия активации. Гомогенный и гетерогенный катализ. Физические методы ускорения химических реакций.

	1	
5	Растворы.	Типы растворов. Способы выражения состава растворов. Растворы неэлектролитов и электролитов. Водные растворы электролитов. Сильные и слабые электролиты. Свойства растворов электролитов. Активность. Электролитическая диссоциация воды. Водородный показатель среды. Ионные реакции в растворах. Гидролиз солей. Теория кислот и оснований.
6	Электрохимические процессы.	Окислительно-восстановительные реакции (ОВР). Окислительно-восстановительные свойства элементарных веществ и химических соединений. Правила расстановки коэффициентов в ОВР методом электронного баланса. Понятие об электродных потенциалах. Зависимость величины электродных потенциалов от различных факторов. Уравнение Нернста. Стандартный водородный электрод и водородная шкала потенциалов. Гальванические элементы. ЭДС и ее измерение. Концентрационные гальванические элементы. Электролиз. Электролиз с нерастворимым и растворимым анодами. Последовательность электродных процессов. Законы Фарадея, выход по току. Практическое применение электролиза. Электрохимическое получение и рафинирование металлов. Основы гальванических методов нанесения покрытий. Аккумуляторы.
7	Коррозия и защита металлов и сплавов.	Основные виды коррозии. Химическая коррозия. Электрохимическая коррозия. Коррозия под действием блуждающих токов. Методы защиты от коррозии: легирование, защитные покрытия, электрохимическая защита, изменение свойств коррозионной среды, ингибиторы коррозии, рациональное конструирование.
8	Химия металлов.	Зависимость свойств металлов от их положения в периодической системе Д. И. Менделеева. Интерметаллические соединения и твердые растворы металлов. Основные методы получения металлов. Физико-химические процессы при сварке и пайке металлов. Получение чистых металлов. Свойства рметаллов и их соединений. Свойства переходных металлов, d-элементы IV-VII групп. Химия элементов семейств железа, их сплавы и химические соединения. Химия платиновых металлов. Химия металлов подгрупп меди и цинка.
9	Химия неметаллических элементов. Неорганическая химия р-элементов IV	Неметаллы и полуметаллы. Зависимость свойств неметаллов от их положения в периодической таблице Д. И. Менделеева. Бор и его соединения. Элементы IV и VII групп и их соединения.

	группы. Химия	Углерод и его аллотропные формы. Монооксид и
	полупроводников	диоксид углерода.
	полупроводников	· · · · · · · · · · · · · · · · · · ·
		Карбонаты. Силикаты. Стекла. Ситаллы. Фарфор,
		техническая и строительная керамика.
		Сверхпроводящие материалы. Элементные
		полупроводники. Полупроводниковые соединения.
		Физико-химические способы обработки
		полупроводников.
10	Электрохимические	Химические источники тока. Электрохимические
	процессы в	генераторы. Электрохимические преобразователи
	энергетике,	/хемотроны/. Электрохимическая обработка металлов
	машиностроении и	и сплавов. Получение и свойства гальванопокрытий.
	приборостроении.	
11	Химия и охрана	Технический прогресс и экологические проблемы.
	окружающей среды.	Роль химии в решении экологических проблем.
		Продукты горения топлива и защита воздушного
		бассейна от загрязнений. Методы малоотходной
		технологии. Водородная энергетика. Получение и
		использование водорода. Охрана водного бассейна.
		Характеристика сточных вод. Методы очистки
		сточных вод. Методы замкнутого водооборота.
		TO HIBA BOA. HICTORD SAMMITYTOTO BOAGGOODPOTA.

3 УЧЕБНО-МЕТОДИЧЕСКАЯ КАРТА УЧЕБНОЙ ДИСЦИПЛИНЫ 3.1 Учебно-методическая карта учебной дисциплины для очной формы обучения

№ недели	Лекции (наименование тем)	Часы	Практические (семинарские) занятия	Часы	Лабораторные занятия	Часы	Самостоятельная работа, часы	Форма контроля знаний	Баллы (max)
IVIO	уль 1				Лаб. р. 1.				
1	1 Строение атома и систематика химических элементов	2			Оксиды, основания, кислоты, соли: получение и химические свойства	2	3		
2	1. Строение атома и систематика химических элементов	2	Пр. р. 1. Классификация и номенклатура неорганических соединений	2			3	КР	5
3	2 Химическая связь	2			Лаб. р. 2. Определение молярной массы эквивалента карбоната кальция.	2	3	3ЛР	5
4	3 Энергетика химических процессов, Химическое равновесие	2	Пр. р. 2. Основные понятия и законы химии.	2			3	КР	5
5	3 Энергетика химических процессов, Химическое равновесие	2			Лаб. р. 3. Определение теплового эффекта реакции нейтрализации.	2	3	3ЛР	5

6	4 Равновесие в гетерогенных системах. Химическая кинетика	2	Пр. р. 3 Строение атома. Электронные формулы элементов. AB3.	2			3	КР	5
7	4 Равновесие в гетерогенных системах . Химическая кинетика .	2			Лаб. р. 4. Зависимость скорости реакции от концентрации реагирующих веществ. Химическое равновесие.	2	3	ЗЛР	5
8	5 Растворы.	2	Пр. р. 4. Периодическая система элементов. Химическая связь.	2			3	ПКУ	30
Moz	цуль 2		тинин тескил сылы.	l					
9	5 Растворы.	2			Лаб. р. 5. Реакции ионного обмена.	2	3	ЗЛР	5
10	6 Электрохимические процессы	2	Пр. р. 5. Энергетика химических процессов.	2			4	КР	5
11	6 Электрохимические процессы	2			Лаб. р. 6. Окислительно- восстановительные реакции.	2	3	ЗЛР	5
12	7 Коррозия и защита металлов и сплавов.	2	Пр. р. 6. Концентрации растворов. Свойства растворов неэлектролитов.	2			4	КР	2,5
13	7 Коррозия и защита металлов и сплавов.	2			Лаб. р. 7. Гальванические элементы.	2	3	ЗЛР	5
14	8Химия металлов.	2	Пр. р. 7. Гидролиз солей.	2			4	КР	
15	9 Химия неметаллических элементов. Неорганическая химия р-элементов IV группы. Химия полупроводников.	2	- 135		Лаб. р. 8. Коррозия. Защита металлов от коррозии.	2	3	ЗЛР	5
16	10. Электрохимические процессы в энергетике, машиностроении и приборостроении.	2	Пр. р. 8. Электрохимические процессы	2			4		2,5
17	11 Химия и охрана окружающей среды.	2					2	ПКУ	30
18- 20		34		16		16	30 84	ТА* (экзамен)	40 100
Щ_	Итого	34		10	l	10	04	L	100

Принятые обозначения:

КР – контрольная работа; ЗЛР – защита лабораторной работы; ПКУ – промежуточный контроль успеваемости;

ТА – текущая аттестации.

Итоговая оценка определяется в соответствии с таблицей: Экзамен, дифференцированный зачет

Оценка	10	9	8	7	6	5	4	3	2	1	0
	100-										
Баллы	94	93-87	86-80	79-72	71-65	64-58	57-51	50-41	40-17	16-1	0

4 ИНФОРМАЦИОННО-МЕТОДИЧЕСКАЯ ЧАСТЬ

4.1 Образовательные технологии

При изучении дисциплины используется модульно-рейтинговая система оценки знаний. Применение форм и методов проведения занятий при изучении различных тем курса представлено в таблице.

№	Форма проведения	Вид	Вид аудиторных занятий						
п/п	занятий	Лекции	Лабораторные	Практические	часов				
			занятия	занятия					
1	Традиционные	Темы № 1, 2,5, 10	ЛР № 1, 2, 4, 6, 8	ΠP № 3, 5, 6, 7.	30				
2	Мультимедиа	Темы № 3,4 6, 7,8, 9			20				
3	Проблемно-	Темы № 11	ЛР № 3, 5, 7	ПР № 8	10				
	ориентированные								
4	Дискуссии, беседы			ΠP № 1, 2, 4	6				
	ИТОГО	34	16	16	66				

4.2 Оценочные средства

Используемые оценочные средства по учебной дисциплине представлены в таблице и хранятся на кафедре.

No	Вид оценочных средств	Количество
п/п		комплектов
1	Вопросы к экзамену	2
2	Экзаменационные билеты	1
3	Тестовые задания для проведения защиты лабораторных работ	10
4	Контрольные задания для проведения рейтинг-контроля	5

4.3 Перечень используемых средств диагностики

Для диагностики компетенций используются следующие формы:

- письменная;
- устно-письменная.

Для оценки уровня знаний обучающихся используются следующие средства диагностики:

- устный и письменный опрос во время практических занятий;
- проведение контрольных работ (тестовых заданий) по отдельным темам;
- защита лабораторных работ;
- собеседование при проведении индивидуальных и групповых консультаций;
- выступление обучающегося по подготовленному реферату, в том числе на конференции;
- сдача экзамена.

4.4 Методические рекомендации по организации и выполнению самостоятельной работы обучающихся по учебной дисциплине

При изучении дисциплины используются следующие формы самостоятельной работы:

- работа с лекционным материалом, предусматривающая проработку конспекта лекций и учебной литературы;

- поиск (подбор) и обзор литературы и электронных источников информации по индивидуально заданной проблеме курса;
- подготовка к лабораторным работам, практическим занятиям;
- подготовка к экзамену;
- подготовка устных выступлений по заданной тематике;
- решение индивидуальных задач во время проведения практических занятий под контролем преподавателя;
- выступление обучающегося по подготовленному реферату, в том числе на конференции.
- подготовка презентации по заданной теме.

Перечень контрольных вопросов и заданий для самостоятельной работы приведен в приложении и хранится на кафедре.

4.5 Основная литература

No	Автор, название, место издания,	Гриф	Количе
ПП	издательство, год издания учебной		ство
	литературы		экземпл
			яров
1	Химия: учебник для академического бакалавриата. Ю.А. Лебедев, Г.Н. Фадеев, А.М. Голубев, В.Н. Шаповал, 2-е изд. Москва: издательство Юрайт. – 2019. 435 с.	УМО ВО	25

4.6 Дополнительная литература

No	Автор, название, место издания,	Гриф	Количест
Π/Π	издательство, год издания учебной		во
	литературы		экземпля
			ров
1	Общая химия. Теория и задачи:	Допущено Мин-вом общего и	20
	учеб. пособие / под ред. Н. В.	профессионального образования	
	Коровина, Н. В. Кулешова 5-е изд.,	РФ кач-ве УП для студентов	
	стер СПб. ; М. ; Краснодар : Лань,	высших учебных заведений,	
	2021 492c.	обучающихся по техническим	
		направлениям и специальностям	

4.7 Перечень наглядных и других пособий, методических рекомендаций по проведению учебных занятий, а также методических материалов к используемым в образовательном процессе техническим средствам

4.7.1 Методические рекомендации

- 1. Гальванические элементы. Коррозия металлов. Защита от коррозии: методические рекомендации к практическим занятиям по дисциплине Химия для студентов всех специальностей / составитель Лисовая И.А.-Могилев.- Белорус.-Рос. ун-т, 2019.- 24 с, 60 экз.
- 2. Качественный и количественный химический анализ: методические рекомендации к практическим занятиям по дисциплине Химия для студентов всех

специальностей / составитель Лужанская И.М.-Могилев.- Белорус.-Рос. ун-т, 2019.- 24 с, 60 экз.

- 3. Классификация неорганических соединений. Методические рекомендации к практическим занятиям для студентов всех специальностей и всех направлений подготовки очной и заочной форм обучения / составитель Лисовая И.А. Могилев- Белорус.-Рос. унт., 2020.-16 с, 66 экз.
- 4. Гидролиз солей. Методические рекомендации к практическим занятиям для студентов всех специальностей и всех направлений подготовки очной и заочной форм обучения / составитель Лужанская И.М. Могилев- Белорус.-Рос. ун-т, 2020. 16 с, 66 экз.
- 5. Строение атома и химическая связь. Методические рекомендации к практическим занятиям по химии для студентов всех специальностей и направлений подготовки дневной и заочной форм обучения / составитель Лисовая И.А. Могилев- Белорус.-Рос. ун-т, 2021. 16 с, 86 экз.
- 6. Химическая кинетика и химическое равновесие. Методические рекомендации к практическим занятиям по химии для студентов всех специальностей и направлений подготовки дневной и заочной форм обучения/ составитель Лисовая И.А. Могилев-Белорус.-Рос. ун-т, 2021. 16 с, 66 экз
- 7. Основные понятия и законы химии. Методические рекомендации к практическим занятиям по химии для студентов всех специальностей и направлений подготовки дневной и заочной форм обучения/ составитель Лужанская И.М.-Могилев.- Белорус.-Рос. ун-т, 2021. 16 с, 86 экз

4.7.2 Плакаты, мультимедийные презентации

- Тема 3 Энергетика химических процессов, Химическое равновесие
- Тема 4 Равновесие в гетерогенных системах . Химическая кинетика
- Тема 6- Электрохимические процессы
- Тема 7 Коррозия и защита металлов и сплавов
- Тема 8 Химия металлов
- Тема 9 Химия неметаллических элементов. Неорганическая химия р-элементов IV группы. Химия полупроводников.

4.8 Материально-техническое обеспечение учебной дисциплины

Материально-техническое обеспечение дисциплины содержится в паспорте химических лабораторий, рег. номер ПУЛ - 4.403 - 334/1-21; ПУЛ – 4.403 -340/1-21.

5 ВОСПИТАТЕЛЬНАЯ СОСТАВЛЯЮЩАЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

В рамках образовательного процесса у обучающихся формируются:

- -стремление к формированию нравственных ценностных ориентаций и использование в своей деятельности;
 - -национальное самосознание, чувство патриотизма;
- -социально активное и ответственное поведение, осознание и руководство в своей деятельности конституционным правам и обязанностям;
- -проявление толерантности, готовности и способности к взаимопониманию, диалогу и сотрудничеству, руководство принятыми в обществе нравственными нормами и общечеловеческими ценностями;
 - -эстетическое отношение к миру, ко всем сферам жизнедеятельности общества;

- -потребность в самореализации и самосовершенствовании, проявление эмоциональной зрелости;
- -готовность к профессиональному самоопределению на основе знаний и учета своих возможностей, способностей и интересов;
- -руководство правилами охраны окружающей среды и рационального природопользования, следование принципам здорового образа жизни, физического самосовершенствования;
- -неприятие вредных привычек и способность противодействовать асоциальным явлениям.

Для формирования у обучающихся личностных качеств применяются следующие методы:

- личный пример преподавателя;
- использование в качестве примеров выдающихся белорусских ученых и их вклада в мировую науку;
- применение инновационных методов обучения: дискуссия, конференция, перевернутый класс и т.д.;
 - организация групповой проектной и научно-исследовательской деятельности;
- реализация на занятиях условий, необходимых для формирования целей воспитательного процесса.

6 ПРОТОКОЛ СОГЛАСОВАНИЯ УЧЕБНОЙ ПРОГРАММЫ

Название учебных дисциплин, (циклов дисциплин), с которыми требуется согласование/ специальности	Название кафедры, обеспечивающей дисциплину / выпускающей кафедры	Предложения об изменениях в содержании программы	Подпись заведующего кафедрой	Решение, принятое кафедрой, разработавшей программу (с указанием даты и номера протокола)
1-36 11 01	Транспортные и технологические машины	Нет.	(И.В.Лесковец)	Протокол №12 От.21.04.2022 г