
1. Bogdan K., Jakubowski T. Estimates of heat kernel of fractional Lapla-
cian perturbed by gradient operators // Comm. Math. Phys. 2007.
Vol. 271, pp. 179–198.

2. Kinzebulatov D., Madou K.R., Semënov Yu.A. On the supercriti-
cal fractional diffusion equation with Hardy-type drift // Preprint,
arXiv: 2112.06329.

3. Kinzebulatov D., Semënov Yu.A. Fractional Kolmogorov opera-
tor and desingularizing weights // Publ. RIMS Kyoto, to appear
(arXiv: 2005.11199).

4. Kinzebulatov D., Semënov Yu.A., Szczypkowski K. Heat kernel of frac-
tional Laplacian with Hardy drift via desingularizing weights // J.
London Math. Soc., to appear (arXiv: 1904.07363).

5. Nash J. Continuity of solutions of parabolic and elliptic equations //
Amer. Math. J. 1958. Vol. 80, pp. 931–954.

On two-point boundary value problem for the
matrix Riccati equation with parameter

I. I. Makovetsky
Mogilev, Belarusin-Russian University

e-mail: imi.makzi@gmail.com

Consider a Riccati equation of the following form:

dX

dt
= λ(A(t)X +XB(t) +XQ(t)X + F (t)) ≡ G(t,X, λ), (1)

where A,B,Q, F ∈ C(I,Rn×n), I = [0, ω], ω > 0, λ ∈ R.
We study a two-point boundary-value problem for (1) in case

of
MX(0, λ) +NX(ω, λ) = 0, (2)

where M and N are real n× n matrices.
Equation (1) is prominent in the differential equation theory

and its applications [1–9]. Similar problems were considered with the
aid of qualitative methods in [1, 4–7] and on the basis of constructive
methods in [3, 8–11].
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The present work is a continuation of [10] and deals with a
constructive analysis of problem (1), (2) on the basis of the method
presented in [3, ch. 1].

We studied the issues of convergence, the rate of convergence
of the algorithm (4).

We introduce the notations:

Dρ = {(t,X) : t ∈ I, ‖X‖ ≤ ρ}, α = max
t∈I

‖A(t)‖, β = max
t∈I

‖B(t)‖,

h = max
t∈I

‖F (t)‖, δ = max
t∈I

‖Q(t)‖, ε = |λ|, μ = max(‖M‖, ‖N‖),

γ = ‖(M +N)−1‖, ‖X‖C = max
t∈I

‖X(t, λ)‖,

ε1 =
ρ

a0ρ2 + a1ρ+ a2
, ε2 =

1

2a0ρ+ a1
, ε0 = min{ε1, ε2},

a0 = γμδω, a1 = γμ(α+ β)ω, a2 = γμωh, q = ε(2a0ρ+ a1),

where ρ > 0, ‖X‖C is the norm in finite–dimensional Banach algebra
B(n) of continuous n×n matrices-functions; ‖ �‖ is the corresponding
norm of matrixes, for example, any of norms given in [11, p. 21].

The problem (1), (2) is equivalent to the matrix integral equa-
tion

X(t, λ) = (M +N)−1×

×
{
M

t∫
0

G(τ,X(τ, λ), λ)dτ −N

ω∫
t

G(τ,X(τ, λ), λ)dτ

}
.

(3)

Theorem. Let det(M + N) �= 0. Then for |λ| < ε0 the solution
of problem (1), (2) exists in the region Dρ, it is unique and can be
presented as a uniform limit of a sequence of matrix functions deter-
mined by the recurrent integrated relationship

Xk+1(t, λ) = (M +N)−1

{
M

t∫
0

G(τ,Xk(τ, λ), λ)dτ−

−N
ω∫
t

G(τ,Xk(τ, λ), λ)dτ

}
, k = 0, 1, 2, . . . ,

(4)
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where X0(t, λ) is arbitrary C(I×R,Rn×n)-class matrix, which belongs
to the sphere ‖X0‖C ≤ ρ. Herewith the matrix functions Xm(t, λ)
(m = 1, 2, . . . ) it also satisfy to condition (2).

By using induction for k, one can show readily that members of
sequence {Xk(t, λ)}∞0 , belong to the sphere ‖X‖C ≤ ρ. The sequence
converges uniformly to the solution of (3).

Also received estimates

‖X −Xk‖C ≤ qk

1− q
‖X1 −X0‖C k = 0, 1, 2, . . . . (5)

We have from (5) for k = 0, X0 = 0

‖X‖C ≤ ‖X1‖C
1− q

. (6)

From (4) for X0 = 0 we obtain an estimate for X1:

‖X1‖C ≤ γμωεh. (7)

Using (7) and (6) we have

‖X‖C ≤ γμωεh

1− q
.

Remark. The conditions for the unique solvability of problem (1),(2)
are expressed in terms of its initial data. Algorithm (4) contains sim-
ple computational operations and is therefore convenient for possible
applications. The corresponding estimates are obtained in terms of
the problem.
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Let p � d
dt be a differential operator, h = const > 0, e−ph be a

delay operator: e−phv(t) = v(t− h), e−jphv(t) = v(t− jh). The fol-
lowing Three-time-scale Singularly Perturbed Linear Time-invariant
System with Multiple Commensurate Delays in the slow state vari-
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