УДК535:2 МНОГОУГЛОВАЯ ЭЛЛИПСОМЕТРИЯ ПОЛИКРИСТАЛЛИЧЕСКОГО КРЕМНИЯ НА КРЕМНИЕВОЙ ПОДЛОЖКЕ С ОКСИДНЫМ СЛОЕМ

Н. И. СТАСЬКОВ, Н. А. КРЕКОТЕНЬ, А. В. ШИЛОВ Учреждение образования «МОГИЛЕВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ им. А. А. Кулешова» Могилев, Беларусь

Кремниевые многослойники широко используются в интегральной микроэлектронике. Качество работы приборов зависит от структуры слоя поликристаллического кремния (pSi) и наличия вредных поверхностных и переходных слоев. Процесс получения $pSi - SiO_2 - cSi$ начинается с обработки подложек (cSi). Наиболее эффективный процесс очистки с целью удаления естественного поверхностного слоя протекает в растворах на основе перекиси водорода. При быстром термическом отжиге в сухом кислороде на поверхности подложки образуется слой диоксида кремния (SiO_2) . Затем, на слой SiO_2 осаждается слой pSi. Ранее [1] обсуждалось кремниевой структуры влияние параметров слоев на спектральные характеристики. В данном сообщении приводятся результаты эллипсометрического контроля параметров многоуглового (pSi,SiO_2) и паразитных переходных (воздух- $pSi,pSi-SiO_2$, SiO_2-cSi) слоев.

Авторы рассмотрели две электродинамические модели – двухслойную (технологическую) пятислойную (реальную). Для определения слоёв использовали вещественного состава модель Максвелла в которой Гарнетта – Бруггемана, матрица c диэлектрической проницаемостью ε_0 заполнена на $f_1\,\%$ наночастицами с ε_1 и на $f_2\,\%$ наночастицами с ε_2 . Доля материала матрицы в слое $f_3 = (100 - f_1 - f_2)$ %.

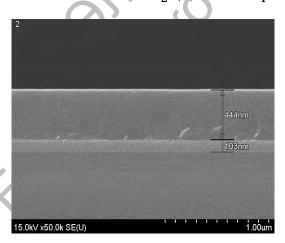


Рис. 1. Структура $pSi - SiO_2 - cSi$

Поверхностный моделировался слой смесью диоксида кремния и пустот. Слой поликристаллического кремния представлялся матрицей аморфного кремния (αSi) , которая заполнялась кристаллическим кремнием и воздухом. Переходные слои $pSi - SiO_2$ и $SiO_2 - cSi$ рассматривали как физические смеси аморфного кремния, кристаллического кремния и диоксида кремния. Слой SiO₂ и однородными. подложка считались Оптические характеристики материалов SiO_2 , cSi и αSi приведены в ПО к ES2.

На растровом электронном микроскопе РЭМ S-4800 фирмы Hitachi было получено изображение скола промышленной структуры pSi – SiO_2 – cSi (КДБ12) (рис. 1), из которого можно оценить толщины слоев pSi (440 нм) и SiO_2 (100 нм). С помощью ЛЭФ 3М (λ = 632,8 нм) измерялись поляризационные углы ψ и Δ этой структуры, на основании которых методом наименьших квадратов численно решались обратные задачи эллипсометрии (восстанавливались эффективные оптические параметры двух или пяти слоев). Данные решений этих задач приведены в таблице. Определенные оптические постоянные использовали для оценки f_i слоев.

Табл. 1. Решения обратных задач эллипсометрии

	Пять слоев	Два слоя
ПодложкаКДБ12	3,87 - i0,031	3,883 - i0,020
$(n_3 - ik_3)$		70 70
Переходный слой	-0,704	0, 20,
$SiO_2 - cSi (\alpha_3, \text{HM})$		
Слой SiO_2	1,461-i0, $100,4$	1,468 - i0, $101,3$
$(n_2-ik_2, \overline{d},$ нм)		
Переходный слой	-5,338	_
$pSi-SiO_2$ $(\alpha_2, \text{нм})$		O ,
Слой <i>pSi</i>	3,946 - i0,021, 443.3	3,956 - i0,027, 441,7
$(n_1-ik_1, d, нм)$	\triangle \triangle	>
Поверхностный (α_1, HM)	-2,095	_

Неравенства $|\alpha_2| > |\alpha_1| > |\alpha_3|$ указывают на изменения толщин и структуры переходных слоев в $pSi - SiO_2 - cSi$. По величине α_3 можно судить о малой толщине переходного слоя $SiO_2 - cSi$, которая близка к толщине естественного слоя на пластине КДБ12 до химической обработки. В то же время, условия получения термического SiO_2 на кремниевых пластинах не приводят к образованию толстых переходных слоев. На это указывают оптические характеристики подложки, определенные с использованием двухслойных и пятислойных моделей. Из соотношений оптических характеристик слоя pSi, приведенных в табл. 1. следует, что наибольшая пористость содержится в слое pSi и его окружении.

СПИСОК ЛИТЕРАТУРЫ

1. Стаськов, Н. И. Переходные слои в кремниевых структурах SiO_2 – CSi и $PSi – <math>SiO_2$ – CSi / Н. И. Стаськов, С. О. Парашков, Т. Н. Коледа // Актуальные вопросы теоретической физики, физики конденсированных сред и астрофизики: материалы Междунар. науч.-практ. конф., Брест, 2–3 октября 2014 г. / БрГУ имени А. С. Пушкина; ред. А.В.Демидчик и [др.]. Брест – 2014. – С. 96–101.