ИССЛЕДОВАНИЕ КПД ПЕРЕДАЧ С ПРОМЕЖУТОЧНЫМИ ТЕЛАМИ КАЧЕНИЯ ПРИ РАБОТЕ В МУЛЬТИПЛИКАТОРНОМ РЕЖИМЕ,

Е.С. Лустенкова, старший преподаватель Белорусско-Российский университет, 212000, Республика Беларусь, г. Могилев, пр.Мира, 43, тел. (+375 447)-278-243

E-mail: fittsova@gmail.com

Передачи с промежуточными телами качения (ППТК) цилиндрического типа применяются в условиях ограничений на радиальные размеры для размещения привода: бурение, ремонт и эксплуатация скважин [1]. В исследуемой передаче шарики 4 перемещаются по беговым дорожкам внутренней 1 и наружной 3 втулок, а также вдоль осевых пазов сепаратора 2 (рис. 1). При работе в редукторном режиме ведущей является внутренняя втулка с беговой дорожкой с числом периодов $Z_1 = 1$ (в форме эллипса). Сепаратор является ведомым звеном, а наружная втулка с многопериодной беговой дорожкой с числом периодов Z_3 остановлена и связана с сепаратором. Целью работы являлась оценка КПД при работе передачи в режиме мультипликатора.

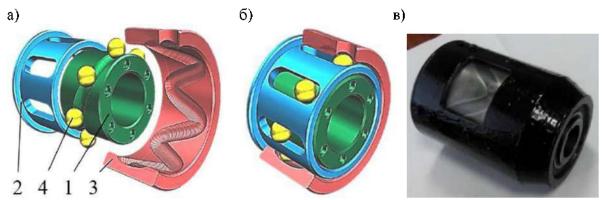


Рис. 1. ППТК цилиндрического типа: а – основные элементы; б – передача в сборе; в – натурный образец.

Передаточное отношение i_p зависит от числа периодов дорожек: $i_p = 1 + Z_3$. Если ведущим сделать сепаратор, а внутреннюю втулку ведомой, то передаточное отношение $i_m = 1/i_p$. КПД рассматриваемой передачи существенно зависит от коэффициента трения f [2], который должен учитывать качение со скольжением. Основными геометрическими параметрами ППТК являются радиус окружности R — образующей цилиндрической поверхности, на которой расположены центры масс тел качения, — и амплитуда беговых дорожек A. Эти параметры определяют средние значения углов подъема α_{mj} беговых дорожек внутренней (j = 1) и наружной (j = 3) втулок

$$\alpha_{nij} = \arctan\left(\frac{2 \cdot A \cdot Z_{nij}}{\pi \cdot R}\right). \tag{1}$$

Ранее были получены формулы для определения КПД для ППТК, работающей в редукторном и мультипликаторном режимах, как функции углов α_{m1} , α_{m3} , угла трения $\psi = \arctan(f)$ и передаточного отношения [3].

Установим влияние углов подъема на КПД ППТК, приняв следующие значения параметров: R=30 мм, $i_p=12$ ($Z_1=1$, $Z_3=11$) для редуктора и $i_m=0.083$ ($Z_1=1$, $Z_3=11$) для мультипликатора. При этом рассмотрим влияние угла α_{m1} , т. к. углы подъема связаны зависимостью

$$tg(\alpha_{m1}) = \frac{Z_1}{Z_2} \cdot tg(\alpha_{m3}). \tag{2}$$

Дополнительно исследовано влияние приведенного коэффициента трения f (рис. 2).

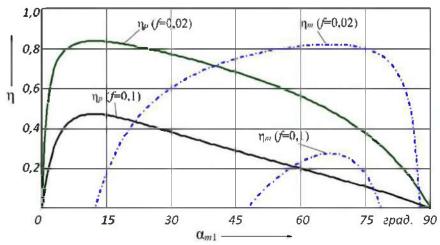


Рис. 2. Зависимость КПД от угла α_{m1} .

По результатам расчета устанавливался угол подъема, обеспечивающий максимальный КПД. Из выражения (2) определялось оптимальное значение амплитуды A дорожек, так как радиус R определяет габариты передачи и при проектировании, как правило, задается. Данные для сравнения приведены в табл. 1.

Таблица 1. КПД и параметры исследуемых передач.

Режим работы	f	Максимальный	Оптимальные значения		
передачи		КПД	α_{m1} , $^{\circ}$	α_{m3} , \circ	A, mm
Редукторный	0,02	0,836	12,035	66,906	10,054
Мультипликаторный	0,02	0,820	66,921	12,044	10,047
Редукторный	0,10	0,471	12,033	66,902	10,045
Мультипликаторный	0,10	0,274	66,864	12,011	10,026

Установлено, что для ППТК с передаточным отношением 12 оптимальные значения геометрических параметров для редукторного и мультипликаторного режима отличаются незначительно. Однако влияние коэффициента трения на КПД более существенно для мультипликаторов. При определенных значениях α_{m1} (при которых $\eta_m \le 0$ на рис. 2) возникает самоторможение, и передача движения становиться невозможной.

Список литературы:

- 1. Сазонов, И. С. Методология расчета и проектирования передач с составными промежуточными телами качения / И. С. Сазонов, М. Е. Лустенков, А. П. Прудников, Е. С. Фитцова // Вестник Белорусско-Российского университета. 2014. № 2 (43). С. 60–70.
- 2. Efremenkov, E. A., Bonnard E. Power Parameters Automated Calculation for Transmission with Intermediate Rolling Bodies and Free Cage // IOP Conf. Series: Materials Science and Engineering. 2020. vol. 795. 6 p.
- 3. Лустенков, М. Е. Силовой анализ передач с промежуточными телами качения / М. Е. Лустенков // Известия высших учебных заведений. Машиностроение. 2016. № 10. С. 26—31.