# Особенности функций распределения по скоростям и энергиям для пылевой фракции в присутствии пыле-акустического солитона

Ф. М. Трухачёв<sup>1,2,3</sup>, Н. В. Герасименко<sup>2</sup>, М. М. Васильев<sup>1,3</sup> и О. Ф. Петров<sup>1,3</sup>

<sup>1</sup> Объединенный институт высоких температур РАН, Ижорская ул., 13, стр.2, Москва 125412, Россия

 <sup>2</sup> Межгосударственное образовательное учреждение высшего образования «Белорусско-Российский университет», проспект Мира, 43, Могилев 212000, Беларусь
 <sup>3</sup> Московский физико-технический институт (государственный университет), Институтский пер., 9, Долгопрудный 141701, Россия

#### E-mail: ftru@mail.ru

Статья поступила в редакцию 4 декабря 2022 г.

Аннотация. Рассмотрен случай движения одномерного пыле-акустического солитона в пылевой плазме. Для случая холодной пылевой фракции рассчитаны функции распределения по скоростям и энергиям, возмущенные солитоном. https://doi.org/10.33849/2022103

# 1. ВВЕДЕНИЕ

Пылевой (коллоидной) плазмой называют плазму, которая, кроме электронов и ионов, содержит фракцию заряженных пылевых частиц микронных и субмикронных размеров [1]. Исследование свойств пылевой плазмы связано с такими физическими и техническими проблемами как: формирование звезд и планет, физика активных броуновских частии, очистка технологических помещений и реакторов и др. [2, 3]. Отличительной особенностью экспериментов с пылевой плазмой является доступность измерительных инструментов и технологий. Относительно большие размеры пылевых частиц, а также их большая инертность позволяет использовать видеокамеры для регистрации процессов и явлений в пылевой плазме. Отметим, что многие явления становится возможным наблюдать непосредственно. Важным классом таких явлений являются различные процессы самоорганизации, в частности, волновые явления. В плазме без магнитного поля наиболее распространенной волновой модой является пыле-акустическая мода, теоретически предсказанная в 1990 году [4] и детально исследованная впоследствии [2, 3]. Как правило, скорость и частота пыле-акустических волн лежит в диапазонах  $C_d \sim 1$ -10 см/с,  $\omega_d \sim 10$ -100 с<sup>-1</sup> соответственно. В лабораторных экспериментах исследовались как самовозбуждаемые волны [5-9], так и волны с искусственным возбуждением [10]. В большинстве случаев волны в разрядной пылевой плазме вызывают сильную модуляцию пылевой концентрации, что делает их хорошо наблюдаемыми и свидетельствует об их нелинейности. Нелинейные пыле-акустические волны в плазме часто имеют солитоноподобный профиль и приводят к кинетическому разогреву пылевой фракции и ускорению заряженных частиц [5-7, 9]. Анализ функций распределения по скоростям f(v) для пылевой фракции обнаружил ее анизотропность [11-13]. В частности, ширина функции распределения в продольном направлении  $f(v_{||})$  превышала ширину функции распределения в поперечном направлении  $f(v_{\perp})$ . В работе [14] показано, что ионно-звуковые солитоны сильно влияют на функции распределения ионной фракции, приводя к ее уширению. Целью настоящей работы является теоретический анализ функции распределения пылевой фракции, возмущенной пыле-акустическими солитонами.

#### 2. ТЕОРЕТИЧЕСКАЯ МОДЕЛЬ. ФУНКЦИЯ РАСПРЕДЕЛЕНИЯ ПО СКОРОСТЯМ

Рассмотрим модель плазмы, содержащей кроме электронов и ионов также пылевые частицы постоянного радиуса  $r_d$  и заряда Z. Будем считать, что дрейф заряженных частиц отсутствует, так же как и магнитное поле. Тогда в одномерном случае для рассматриваемой модели можно записать систему МГД-уравнений, содержащую нормированные уравнения движения и непрерывности для пылевой фракции, а также уравнения Больцмана для электронов и ионов [9]:

$$\frac{\partial v_d}{\partial t} + v_d \frac{\partial v_d}{\partial x} = \frac{\partial \Phi}{\partial x},\tag{1}$$

$$\frac{\partial N_d}{\partial t} + \frac{\partial N_d v_d}{\partial x} = 0, \tag{2}$$

$$N_e(\Phi) = \frac{n_e}{n_{e0}} = \exp\left(\frac{e\varphi}{T_e}\right) \equiv \exp\left(\frac{\Phi}{\beta\delta_i}\right), \qquad (3)$$

$$N_i(\Phi) \equiv \frac{n_i}{n_{i0}} = \exp\left(-\frac{\Phi}{\delta_i}\right). \tag{4}$$

Здесь  $n_j, n_{j0}, T_j$  — концентрации, начальные концентрации и температуры частиц сорта j (j = e, i, d для электронов, ионов и пылевых частиц соответственно),  $\delta_j=n_{j0}/Zn_{d0},\,\Phi=e\varphi/C_d^2m_d$ — нормированный потенциал,  $C_d=\sqrt{Z^2n_{d0}T_i/m_dn_{i0}}$ — пыле-акустическая скорость,  $m_d$  — масса пылевых частиц,  $\beta = T_e/T_i$ . Скорость пылевой фракции, нормированная на С<sub>d</sub>, обозначена символом  $v_d$ . Временная t и пространственная x переменные нормированы на  $\omega_d^{-1}$  и  $\lambda_D$  соответственно, где  $\lambda_D = \sqrt{T_i/4\pi e^2 n_{i0}}$  — радиус Дебая,  $\omega_d = \sqrt{4\pi Z^2 n_{d0} e^2/m_d}$  — плазменная частота для пылевой компоненты. Для анализа стационарных солитонных решений введем переменную S = x - Mt, где  $M = V/C_d$  — число Маха, V – скорость волны в лабораторной системе координат. Замена переменных позволяет избавиться от производной по времени в исходной системе уравнений (1)-(4) получив, таким образом, систему обыкновенных дифференциальных уравнений. Далее, используя несложные преобразования (подробнее см. [15]), можно получить выражение для нормированной пылевой концентрации:



Рисунок 1. (а) Профиль потенциала пыле-акустического солитона при  $\delta_i = 1.5$  и  $\beta = 60$  для разных значений M. (б) Зависимость скорости пробной пылевой частицы от времени при M = 1.3. (в) Возмущенная солитоном функция распределения по скоростям для пылевой фракции при разных значениях M.

$$N_d(\Phi) = \frac{M}{\sqrt{M^2 + 2\Phi}}.$$
(5)

Теперь концентрации всех заряженных частиц и потенциал можно связать единственным уравнением Пуассона в нормированном виде:

$$\frac{\partial^2 \Phi}{\partial S^2} = \delta_e \, \exp\left(\frac{\Phi}{\beta \delta_i}\right) - \delta_i \, \exp\left(-\frac{\Phi}{\delta_i}\right) + \frac{M}{\sqrt{M^2 + 2\Phi}}.$$
 (6)

Солитонные решения произвольных амплитуд можно найти с помощью численного интегрирования уравнения (6). На рисунке 1(a) представлены профили потенциала пыле-акустических солитонов при  $\delta_i = 1.5$ и  $\beta = 60$  [9], для разных значений *M*. Как видно, с увеличением скорости солитона растет его амплитуда и уменьшается ширина. В работе [14] исследовалась ионная функция распределения по скоростям, возмущенная ионно-звуковыми солитонами. Анализ сводился к моделированию движения ионов при взаимодействии с докритическим солитоном. Исследуемый ансамбль ионов содержал N частиц. В результате моделирования было показано, что плазма в окрестности солитона и плазма с постоянным ионным пучком имеют сходные функции распределения по скоростям для ионной фракции. В данной работе мы рассмотрим влияние солитонов на функции распределения по скоростям для пылевой фракции. В отличие от [14] рассмотрим движение одной частицы в течение большого промежутка времени. Здесь мы воспользуемся эргодичностью однородной плазмы, что позволяет перейти от анализа по ансамблю частиц к анализу по одной частице за большой промежуток времени.

Для большого ансамбля частиц выражение для функции распределения по проекциям скоростей можно записать в виде  $f(v_d) = \Delta N / N \Delta v_d$ , где  $v_d$  — скорость

пылевых частиц вдоль оси x,  $\Delta N$  — число частиц со скоростями в диапазоне от  $v_d$  до  $v_d + \Delta v_d$ , N — полное количество частиц в ансамбле [14]. С учетом эргодичности для большого промежутка времени можно воспользоваться эквивалентным выражением

$$f(v_d) = \frac{\Delta t}{\tau |v_d|}.\tag{7}$$

Здесь  $\Delta t$  — время, в течение которого выбранная частица имеет скорость в диапазоне от  $v_d$  до  $v_d + \Delta v_d$ ,  $\tau$  — общее время наблюдения. В невозмущенной плазме с холодной пылевой фракцией ( $T_d = 0$ ), функция распределения будет отлична от нуля только при  $v_d = 0$ , поскольку пылевые частицы с ненулевыми скоростями в таком случае отсутствуют. В окрестности солитона скорости частиц возмущаются, как следствие меняется их функция распределения. Чтобы найти возмущенную функцию распределения рассмотрим такой промежуток времени  $\tau$ , чтобы он симметрично содержал в себе солитон. То есть, чтобы при  $t = \tau/2$  солитон находился в центре исследуемой области (как показано на рисунке  $1(\delta)$ ). Задача взаимодействия пылевой частицы с пыле-акустическим солитоном подробно исследована в работе [16]. Для расчета параметров движения частиц использовался второй закон Ньютона, с помощью которого исследовалось движение заряженной пылевой частицы под действием электрического поля солитона. Рассмотрен консервативный и диссипативный случаи. Мы будем действовать так же. Моделируемая ситуация следующая: солитон, движущийся слева направо, изначально расположен в начале координат, анализируемая пылевая частица имеет начальное положение  $x_d = 50$ . Второй закон Ньютона для нее можно записать в нормированном виде [9]:



**Рисунок 2.** (а) Зависимость кинетической энергии пробной пылевой частицы от времени при M = 1.3. (б) Возмущенная солитоном функция распределения по энергиям для пылевой фракции при разных значениях M.

$$\frac{d^2x}{dt^2} = \frac{d\Phi}{dx}.$$
(8)

Формула (8) отличается от формулы (7) из [9] тем, что мы пренебрегли силой трения. На рисунке 1(6) показано решение  $v_d(t)$  уравнения (8) для нашего случая при M = 1.3. Функция  $v_d(t)$  при t = 20-40 является неубывающей  $\Delta v_d \ge 0$ , в то время как при t = 40-60имеем  $\Delta v_d \le 0$ . Тогда из формулы (7) получим для первого и второго интервалов соответственно

$$f_1(\upsilon_d) = \frac{1}{\tau(\Delta \upsilon_d/2\Delta t)}; \quad f_2(\upsilon) = -\frac{1}{\tau(\Delta \upsilon_d/2\Delta t)}.$$
 (9)

Поскольку функция  $v_d(t)$  симметрична относительно  $t = 20, f(v_d) = f_1(v_d) = f_2(v_d)$ . При  $\Delta t \to 0$  получим окончательно

$$f(v_d) = \frac{2}{\tau(dv_d/dt)}.$$
(10)

Формула (10) является точной. В нашем случае зависимость  $v_d(t)$  найдена численно, поэтому и функцию распределения мы найдем численно. Зависимости  $f(v_d)$  представлены на рисунке 1(в) для разных значений М. Можно отметить, что возмущенная солитоном функция распределения по проекциям скоростей имеет два максимума. Один из них находится в нуле (при  $v_d = 0$ ), в работе [9] этот максимум назван фундаментальным, поскольку он определяется невозмущенными частицами. В отсутствие солитонов ему соответствует δ-функция (предельный случай распределения Максвелла при  $T_d = 0$ ). Положение второго максимума функции распределения зависит от скорости и амплитуды солитона. В частности, он смещается вправо с ростом амплитуды солитона. Для больших амплитуд второй максимум находится в сверхзвуковой области  $v_d > 1$ . Полученные результаты согласуются с результатами [9].

# 3. ФУНКЦИЯ РАСПРЕДЕЛЕНИЯ ПО ЭНЕРГИЯМ

В рассматриваемом случае холодной плазмы пылевые частицы имеют нулевую начальную скорость. В окрестности солитона частицы приобретают скорость только вдоль оси x, т.е.  $v_d \equiv (v_d)_x$  при этом  $(v_d)_y = (v_d)_z \equiv 0$ . Кроме того, как показано на рисунке 1(6) $v_d \ge 0$ . Следовательно  $|v_d| \equiv v_d$ . Таким образом, в рассматриваемом случае распределение по абсолютной скорости и распределение по проекциям скоростей совпадают. Для поиска функции распределения по энергиям  $f_E(E)$ , где  $E = v_d^2/2$  — нормированная кинетическая энергия, учтем равенство  $f_E(E) dE = f(v_d) dv_d$ , в результате чего получим

$$f_E(E) = f(v_d) \frac{dv_d}{dE} = \frac{2}{\tau(dE/dt)}.$$
 (11)

Зависимость E(t) представлена на рисунке 2(a). Эту зависимость нетрудно получить, зная  $v_d(t)$  (см. рисунок  $1(\delta)$ ). С помощью зависимости E(t) можно определить  $f_E(E)$  по формуле (11). График возмущенной функции распределения по энергиям при разных значениях параметра M приведен на рисунке  $2(\delta)$ . Все остальные параметры соответствуют рисунку  $1(\epsilon)$ .

## ЗАКЛЮЧЕНИЕ

Теоретически исследовано влияние одномерного консервативного пыле-акустического солитона на функцию распределения по проекциям скоростей для пылевой фракции  $f(v_d)$  и соответствующую функцию распределения по энергиям  $f_E(E)$ . Показано, что солитон сильно искажает изначально равновесное распределение частиц. В частности, солитон приводит к появлению дополнительного выраженного максимума функции распределения в области  $v_d > 0$ . Полученные результаты указывают на то, что в экспериментах следует ожидать уширения функции  $f(v_d)$  в направлении движения нелинейных волн. Полученные аналитические выражения для возмущенной солитоном функции распределения можно легко обобщить на случай ионно- и электронно-акустической моды.

# СПИСОК ЛИТЕРАТУРЫ

- 1. Goertz C 1989 Reviews of Geophysics 27 271-292
- 2. Фортов ВЕ, Храпак АГ, Храпак СА, Молотков ВИ и Петров ОФ 2004 Успехи физических наук **174** 495-544
- 3. Shukla P K and Mamun A 2015 Introduction to dusty plasma physics (CRC press)
- 4. Rao N, Shukla P and Yu M Y 1990 Planetary and space science **38** 543-546
- 5. Schwabe M, Rubin-Zuzic M, Zhdanov S, Thomas H and Morfill G 2007 *Physical review letters* **99** 095002
- Teng L W, Chang M C, Tseng Y P and Lin I 2009 Physical review letters 103 245005
- 7. Chang M C, Teng L W and Lin I 2012 Physical Review E 85 046410
- 8. Williams J 2016 Nature Physics 12 529-530

- 9. Trukhachev F, Vasiliev M, Petrov O and Vasilieva E 2019 Physical Review E 100 063202
- Heidemann R, Zhdanov S, Sütterlin R, Thomas H and Morfill G 2009 Physical review letters 102 135002
- 11. Williams J D and Thomas Jr E 2006 Physics of plasmas 13 063509
- 12. Williams J D and Thomas Jr E 2007 Physics of plasmas 14 063702
- Trukhachev F, Boltnev R, Alekseevskaya A, Vasiliev M and Petrov O 2021 Physics of Plasmas 28 093701
- ФМ Трухачев ММ Васильев и Петров ОФ 2022 Физика плазмы 48 967–974
- ФМ Трухачев ММ Васильев и Петров ОФ 2020 Теплофизика высоких температур 58 563-583
- Trukhachev F, Vasiliev M, Petrov O and Vasilieva E 2021 Journal of Physics A: Mathematical and Theoretical 54 095702