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Abstract—Dynamics of an ensemble of ions of background plasma in the presence of ion–acoustic solitons
in analyzed within the framework of the MHD model. Ion velocity distribution function perturbed by solitons
is found. It is demonstrated that solitons transform the initial equilibrium ion distribution to the form similar
to distribution of plasma containing an ion beam. Characteristic features of the perturbed ion distribution
function corresponding to solitons of different amplitude are determined. The case of propagation of a cas-
cade of solitons frequently observed in practice is analyzed.
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1. INTRODUCTION
Waves and instabilities play an important role in

plasma dynamics. Analysis of influence of wave pro-
cesses on distribution functions of background plasma
currently represents one of the central physical prob-
lem. Indeed, on the one hand, such studies help devel-
oping kinetic theory of plasma [1] and the theory of
nonequilibrium systems [2]. On the other hand, they
can be used for diagnostic of plasma properties and
development of new methods of plasma heating [3–6].

In this work, we present solution to the problem of
perturbation of the background plasma distribution
function upon propagation of ion–acoustic (IA) soli-
tons. This problem was mentioned for the first time in
study [7] aimed at analysis of electric currents gener-
ated in collisionless plasma by solitons of acoustic
type. In particular, by using MHD models and the sin-
gle-particle approximation, it was demonstrated that
the IA solitons elicit unidirectional ion transport by a
distance of several Debye lengths. The direction of ion
transport for solitons characterized by positive polarity
of potential (compression solitons) coincides with the
direction of wave propagation. In the “cold” plasma
model, velocity and, consequently, kinetic energy of
ions turn out to be equal to zero before and after inter-
action with solitons (only position of ions in space
changes). Ion velocity inside the soliton is positive (see
also [8]). Such transport leads to the appearance of
pulsed ion currents with a DC component. Such cur-
rents were referred to as the “soliton currents” [7] (see

also [9–11]). Time resolution of current-measuring
devices needed for detection of soliton currents should
be on the order of the period of ion plasma frequency
[9], which is not always achievable in practice [12, 13].
Soliton currents can have a substantial impact on
plasma properties during the propagation of a large
ensemble of solitons in it. Such situation is frequently
observed in cosmic plasma [13–15]. Nonzero DC
component of soliton currents indicates that the ion
distribution function perturbed by solitons must be
different from the Maxwell one. The importance of
our analysis is underscored by the fact that solitons
and nonlinear waves play an important role in modern
plasma physics, which can be seen from a large num-
ber of studies in the fields of astrophysics [13–22],
cosmology [23–25], nuclear fusion [26, 27], funda-
mental plasma physics [28], etc.

2. BASIC EQUATIONS
Let us find the profile of potential and other

parameters of IA solitons. To this end, let us use a one-
dimensional collisionless MHD model of plasma with
cold ions and hot electrons [7]. The model includes
normalized equations of motion and continuity for
ions, a Boltzmann equation for electrons, and a Pois-
son equation that couples together populations of
charged particles:
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Here, ne and ni are the electron and ion density nor-
malized to unperturbed density n0, respectively;  is
the ion velocity normalized to the ion–acoustic speed
Cs = (Te/mi)1/2; Te is the temperature of electron pop-
ulation; mi is the ion mass;  is the normal-
ized potential of electric field of the wave; e is the ele-
mentary charge. Time t is normalized to , where

 is the ion plasma frequency, and spa-
tial coordinate is normalized to Debye length

. In our model, Ti = 0, so that the
condition necessary for existence of ion acoustic waves

 is fulfilled automatically. Let us consider the
solution for the waves undergone all stages of evolu-
tion that propagate retaining constant amplitude,
shape, and velocity V. Next, V is expressed in terms of
Mach number as M = V/Сs after normalization. Trans-
forming to the reference frame moving with the wave
and introducing new variable , we can
express normalized ion density in the form [7]

After that, the system of equations (1)–(4) can be
reduced to a single Poisson equation given by [7]

(5)

Single integration of (5) with respect to Φ taking into
account boundary conditions dΦ/dS = 0 at Φ = 0
yields an expression governing Sagdeev pseutopoten-
tial given by [7]

(6)

The dependence of U(Φ) for different values of M
is presented in Fig. 1a. Roots Φ0 correspond to the
soliton amplitudes. It is evident that the amplitude
grows with increase in their velocity M (see Fig. 4a in
[7]). Soliton profile Φ(S) is described by solution to
differential equation (6) that can be found either
numerically or in the small amplitude approximation
( ). In the latter case, expansion

 is used, where 
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and . Analytical expression governing the

profile of an IA soliton can be written in the form [7]

(7)

where  is the soliton amplitude. Analyti-
cal expression (7) is an approximation and is valid for
description of solitons with low amplitude (Φ0 < 0.2),
which can be seen from Fig. 1b. It is also evident from
the figure that . However,  with
reduction in the amplitude.

Knowing the soliton profile and parameters of
plasma, we now turn our attention to analysis of the
distribution function of particles.

3. ION VELOCITY DISTRIBUTION 
FUNCTION. ENSEMBLE AVERAGE

Distribution function of light hot electrons can be
considered to be Maxwellian with high degree of accu-
racy. Therefore, let us limit our analysis to finding the
distribution function of ions. We consider the distribu-
tion function in the form of velocity distribution func-
tion (velocity can be either positive or negative). The
expression governing one-dimensional velocity distri-
bution function can be presented in the form

(8)

where  is the x-component of the velocity,  is the
number of particles with velocities falling in the range
from  to , and N is the total number of ions in
the area under consideration. Let us make some com-
ments:

Comment 1. In out model of cold plasma, all ions
are assumed to be uniformly distributed in space and
to have zero initial velocity. Initial position of ions in
the phase space thus differs only by their position in
space.

Comment 2. Ion velocity distribution in the absence
of solitons can be described by a Delta function that
represents the limiting case of a Maxwell distribution
at zero temperature.

Comment 3. As we mentioned before, subcritical IA
solitons perturb ion velocity only in their vicinity; in
the process, ion velocity taking only positive values
[7]. Therewith, ions are moved by several Debye
lengths in the direction of the wave propagation. Ion
motion leads to generation of ion currents that have
pulse character and contain a DC component. Hence,
the perturbed ion velocity distribution function must
be asymmetric with respect to zero. Otherwise, the
average velocity of ions, along with the constant com-
ponent of the ion current, would also be equal to zero.
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Fig. 1. (a) Sagdeev pseudopotential  for different values of parameter M. Possible wave solutions to Eq. (5) in the form of
an isolated soliton, a sequence of solitons with a period of ΔS, and cnoidal waves, respectively, are presented in the inset. Different
initial conditions correspond to different types of solutions. The differences in initial conditions for an isolated soliton and a
sequence of solitons are small, while soliton profiles in these two cases nearly coincide with each other. (b) Profiles of potential
of the IA soliton at M = 1.03; M = 1.05; M = 1.1; M = 1.15. Analytical solutions are presented by solid, dotted, dash-dotted, and
dashed lines, respectively. Corresponding numerical solutions are presented by symbols “▲”.
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Let us choose an ensemble containing N ions of
background plasma that are uniformly distributed on a
straight line along the x axis (Fig. 2). Suppose that the
soliton at the initial moment of time was located to the
left from the ensemble of ions so that it did not perturb
dynamic parameters of the chosen ions. Soliton veloc-
ity is directed from left to right, i.e., toward the ensem-
ble of ions. Let us find velocity distribution for the
ensemble of ions at the moment of time when the soli-
ton is located approximately in the center of the
ensemble. Parameters of motion of singly charged ions
in a stationary coordinate system can be found from
the Newton’s second law [9, 29]:

(9)

where  is the self-consistent electric field of
the soliton. Importantly, the ensemble of ions under
consideration represents part of entire ion population
involving in the self-consisted wave process. There-
fore, motion of individual ions describes the motion of
entire ion population. In the one-dimensional case,
taking into account our normalizations, Eq. (9) can be
rewritten in the form

(10)

Function Ф(x, t) can be found in explicit form by
using substitution S = x – Mt in (7) or numerically
(in the form of a table). Equation (10) holds for all ions
of the ensemble under consideration. The differences
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consist only in initial conditions that describe the
position of individual ions at the initial moment of
time. Moreover, it is seen from Fig. 12a in [7] that tra-
jectories of all ions are identical (the differences con-
sist in spatiotemporal shift). The initial conditions are
as follows:

(1) the number of ions in the ensemble is N = 15;
(2) the initial velocity of all ions of the ensemble is

;
(3) the initial positions of ions are: ,

, where
 represents the initial position of the first par-

ticle of the ensemble, and  is the distance
between adjacent particles;

(4) the initial position of soliton is xS(0) = 0, and its
velocity is M = 1.05 (the corresponding profile is illus-
trated in Fig. 1).

Equation (10) is solved by using the fourth-order
Runge–Kutta method. The main phases of the pro-
cess of interaction of an IA soliton with the ensemble
of ions are illustrated in Fig. 2, namely, the initial state
of the system (a), its state when the soliton is located at
the center of the ensemble of ions (b), and the state
when the soliton moves away from the ensemble (c).

Position of ions of the ensemble is shown by sym-
bols “d”, while initial position of particles is shown by
symbols “○”. For the sake of clarity, symbols “d” and
“○” are separated vertically. Position of particles in the

( ) = =v 0 / 0i dx dt
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Fig. 2. Phases of IA soliton interaction with an ensemble of ions. Symbols “○” and “d” denote initial and current positions of
ensemble ions, respectively. Symbols “○” and “d” are separated vertically for better view. (a) Phase 1, state of the system before
interaction, initial velocity of ensemble ions equals zero; (b) phase 2, IA soliton reaches the center of the ensemble, ion velocity
is nonzero; and (c) phase 3, soliton leaves the ensemble, ion velocity equals zero again, all ions shifted forward by a distance of
several λD. Positions of particles in the velocity space (phase space), along with the distribution of ensemble ions with respect to
projection of velocity, are presented in the insets.
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velocity space (phase diagrams), along with histo-
grams of velocity distribution f( ), are presented in
insets in Fig. 2. The velocity axis is divided into inter-
vals of length  = 0.05. These intervals are used for
finding discrete distribution function f( ) calculated
using expression (8).

It can be seen from Fig. 2a that all ions of the
ensemble are at rest initially (phase 1), and their veloc-
ities are equal to zero. We noted above (comment 2)
that their velocity distribution tends to a delta function
in this case. A similar distribution is observed after
soliton leaves the ensemble of ions (phase 3). Phase 3
differs from phase 1 only by position of ions that were
shifted by the soliton by distance  ~ 3λD, while parti-
cle spacing and ion velocity take initial values of

vi

Δvi

vi

�
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 and , respectively. The process of inter-
action of an isolated ion with an IA soliton was
described in detail in [7, 9].

Phase 2 that can be considered as the active phase
of the soliton–particle interaction is of special interest.
At this phase, the soliton is located approximately in
the center of the ensemble. It is evident from the inset
in Fig. 2b that velocity of ions of the ensemble assumes
nonnegative values in this case (i.e., ). The ion
velocity distribution can be easily found using expres-
sion (8). To this end, it is sufficient calculating the
number of ions in each velocity interval [ , + )
(for convenience, adjacent intervals are filled with dif-
ferent color). It can be seen from the inset in Fig. 2b
that the velocity distribution of particles has an asym-

Δ = 3x =v 0i

≥v 0i

vi vi Δvi
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Fig. 3. Perturbed ion velocity distribution functions  (in phase 2) for large ion ensembles (N = 1000) for several values of
Mach number: curve 1—M = 1.05; 2—M = 1.15; 3—M = 1.3; and 4—M = 1.5; other parameters of the simulation: (a) 
and ; (b) maximum velocity of ions inside the soliton  as a function of its amplitude; and (c) perturbed dis-
tribution function calculated for the ensemble of solitons illustrated in the inset in Fig. 1a for the following parameters: M = 1.05,
N = 1000, , and .
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metric shape, which agrees with comment 3. In partic-
ular, f( ) = 0 at  < 0. However, f( ) > 0 in the
interval of positive velocities 0 ≤ < 0.2. It is in this
interval that velocities of ion interacting with the soli-
ton fall into.

Obviously, the accuracy of obtaining function 
will increase with increase in number N of particles in
the ensemble, as well as upon reduction in increments
Δx and . Perturbed ion distribution functions for
phase 2 for a relatively large ensemble of particles (N =
1000) and different values of Mach number (and, cor-
respondingly, different soliton amplitudes Φ0) are pre-
sented in Fig. 3. The following values of parameters
are used in the calculations: Δx = 0.04; = 0.01. The
method of calculations is identical with the method of
obtaining the data presented in Fig. 2, namely,
Eq. (10) is solved N times for different initial positions
of an ion. This procedure yielded a set of N discrete
dependences . After that, time t at which the soli-
ton was located approximately at the center of the
ensemble of ions is fixed (e.g., t = 50 for the case illus-
trated in Fig. 2b). A one-dimensional array (a row) of
size N that contained velocities of all ions of the
ensemble at a given moment of time is thus obtained.
The obtained array is processed using a simple algo-
rithm that counted the number of particles in each

vi vi vi

vi

v( )if

Δvi

Δvi

v ( )i t
P

interval of velocities [ ;  + ). Note that the
numerical profile of the electric field of the soliton is
used when solving Eq. (10), because expression (7)
yields a large error at large values of Φ0. Numerical
profiles Φ(S) illustrated in Fig. 1b are found as a result
of integration of Eq. (6) (or Eq. (5)) by means of the
Runge–Kutta method. In the process, a nonzero root
of equation U(Φ) = 0 served as initial condition
Φ(0) = Φ0 for numerical solution of Eq. (6) (which is
seen in Fig. 1a).

Let us analyze the obtained results. The shape of
the ion velocity distribution function for all values of
parameter M is characterized by two local maxima that
we denote  and , respectively. The first maximum
is located in the vicinity of zero (i.e., ) for any
value of M. At the same time, the second maximum is
located in the region of positive velocities. The first
maximum is fundamental and is determined by unper-
turbed ions of the background. For the model under
consideration, the first maximum is formed by ions
not yet involved into interaction with the soliton and
ions that had enough time to relax to equilibrium after
interaction. In the absence of solitons, this maximum
reduces to a delta function that describes an ion distri-
bution function in an unperturbed state. Position of
the second maximum of the distribution function
shifts to the right with increase in soliton velocity M

vi vi Δvi

v1 v2

=v1  0
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(and its amplitude ). Diagrams presented in Fig. 3
allow drawing a conclusion that the second maximum
corresponds to maximum velocity that ions can gain as
a result of interaction with the soliton: . The
value of  is illustrated in inset in Fig. 2b. The
dependence of  is presented in Fig. 3b. It can
be seen that the value of  grows with increase in
the soliton amplitude (and its velocity). For large-
amplitude solitons, .

Normalization of the distribution function consist-

ing in the traditional condition that  is
an important aspect. In the discussed case, normaliza-
tion of function  occurs naturally according to
expression (8), namely, .
In other words, normalization is carried out by divid-
ing by number N of particles in the ensemble. The
value of N determines the size of the area occupied by
the ensemble in space. The size of the area can be
found using relation . Results illustrated in
Fig. 3a were obtained assuming that X = 40λD. In our
simulation, soliton was completely contained inside
area X, i.e., D < X, where D is the soliton width. When
D < X (preferably, with some margin), the shape of
function  corresponds to that illustrated in
Fig. 3a. The first maximum of distribution function

 grows with increase in the area of simulation X,
while the second maximum of  diminishes. This
is because the number of unperturbed ions increases
with increase in width X of the area of simulation. It
can easily be demonstrated that the discrete distribu-
tion function reduces to a delta function when

.
From practical point of view, the value of X is

related to spatiotemporal resolution upon measure-
ment of the distribution function of charged particles
in plasma. Specific form of this relation depends on
many factors and will not be discussed here.

It can be seen from Fig. 3a that the shape of the dis-
tribution function perturbed by the soliton is similar to
the distribution function of plasma containing a beam
(see, e.g., Fig. 1.17 in [30]).

4. DISCUSSION
Obtained results suggest that the influence of soli-

ton on the distribution function of the background
plasma is limited to the area where the soliton is
located. This means that the described phenomenon
requires having high spatiotemporal resolution upon
its experimental investigation. An order of magnitude
estimate of the required resolution was obtained in [7,
9] and was found to be at the level of several Debye
length and several periods of the ion plasma frequency.
The situation becomes substantially simpler when
considering a group of solitons propagating one after
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the other. In this case, the requirements for the resolu-
tion are considerably relaxed, and it is sufficient mea-
suring the distribution function using a much longer
period of time for accumulation of information. As we
mentioned above, the case of propagation of a group
of solitons was frequently observed experimentally
[13–15]. The phenomenon of large soliton ensembles
(soliton gas) was also studied theoretically (see, e.g.,
[31] and references therein). Let us compare our
results with the results already known. The case of
propagation of a large group of solitons was analyzed
within the framework of the MHD models in [7, 9,
10]. In this situation, the average soliton current turns
out to be relatively high. Let us analyze the case of
propagation of NS identical solitons. Such a situation
can be simulated either by summing soliton solutions
shifted in space [32] or by numerically integrating
Eq. (5) with proper initial conditions [7, 9]. We opted
using the second approach. All characteristics of soli-
tons correspond to Mach number M = 1.05. Initial
conditions upon integrating Eq. (5) we chosen in the
following form: Φ|S = 0 = 1.2 × 10–5; dΦ/dS|S = 0 = 0, so
that the soliton period is equal to T = 71. In this case,
the distance between centers of solitons can be found
using a simple relation: ΔS = TM ≈ 74.5. The corre-
sponding numerical solution is presented in the inset
in Fig. 1a (in the middle). The situation at NS = 10 cor-
responds to the one illustrated in Fig. 8 in [7]. Ion
velocity distribution in entire interval of ΔSNS = 745
can be found using the algorithm described in Sec-
tion 3. Let us denote the corresponding distribution
function as . This function is plotted in Fig. 3c.
Calculations are carried out using the following
parameters:  and . It can be seen
that, up to a constant (normalization) factor, function

 corresponds to function  presented in
Fig. 3a for M = 1.05. Knowing the velocity distribution
function, the average current density can be found
using expression [33, 34]

(11)

where q is the charge of the particles. In the one-
dimensional case and taking into account normaliza-
tion factors, expression (11) governing the average
density of ion current can be rewrite in the form

, or

(12)

for the discrete case.

S
( )iNf v

Δ = 0.745x Δ =v 0. 01i

S
( )iNf v v( )if

( )=  v ,q f dj v v

( )
∞

−∞
=  Si i N i iJ f dv v v

( ) ( )=  S
Δ Δ Δi i N i i

k

J k f kv v v



1122 TRUKHACHEV et al.
For parameters corresponding to Fig. 3c, we find
that . With increase in the accuracy of dis-
crete calculations (at N = 4000, Δx = 0.18625,  =
2.5 × 10–4 in particular), we find that . Cal-
culated value agrees well with the results obtained in
[7] independently using MHD models and within the
framework of a single-particle approximation.

It can be expected that the second maximum will
“smear out” if solitons in a group are not identical
[31]. A logical continuation of the current research will
be obtaining analytical expressions describing per-
turbed distribution functions of charged particles.

5. CONCLUSIONS

Using a one-dimensional MHD model of a two-
component collisionless plasma and single-particle
(Lagrange) approximation, we analyzed the ion distri-
bution function perturbed by an ion–acoustic soliton
or a group of solitons. Calculations were based on
analysis of velocities of a large number of ions partici-
pating in the interaction with the soliton. It is demon-
strated that the perturbed distribution function has the
shape similar to that of plasma containing an ion
beam, i.e., it is characterized by two maxima. The first
one is fundamental and it is located at . This
maximum is determined by ions that are far from the
soliton at a given moment of time. The second maxi-
mum is located at . In the process, it lies in the
subsonic region for solitons of low amplitude and in
the supersonic region for solitons of high amplitude.
The average density of ion current  induced by a
group of solitons that was calculated using the distri-
bution function agrees well with the results obtained
within the framework of MHD models in [7, 9].
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